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Nonlinear Optimization

There is not a single way to do this, however, we
found out nonlinear conjugate-gradient
method is efficient for this algorithm.
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Gradient-Descent ¢ =l $(0) — ¢ |
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Conjugate-Gradient

Cost Functional

Object Space

Newton-Type Methods
[u“l + F'F160 = V®

F: Functional Derivative Operator

Variational Equation: 0¢p = G,60¢; + G,6060

Distorted-Born approximation
provides a semi-analytical way to
find functional derivatives.

0 = 5¢(1) = Gp00¢y, = GpPp00
5p = FS0

Higher-order
Variations
(neglected)

MLFMA
s A \
F = Gr{I + 0,[I - G,0,]7"G,}
diag{[I — G,0,] 'G5}
Discretization with a subspace \ % /
projection method. MLEMA

EO: Dense, NXN
ET: Dense, N XT =

0,,: Diagonal, NxN

Gr: Dense, RXN I: Diagonal, NXN
- Y,
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 Each MPI process employs OpenMP and
CUDA threads to employ multi-code CPUs
and GPU for up-scaling.

Large Reconstruction
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Conclusions

* Exploiting multiple-scattering is effective, but has
a huge computational burden.

* MLFMA provides algorithmic speedup.

* A hierarchical parallelization strategy improves
the scalability on large supercomputers.

* GPUs and multi-core CPUs provides massively-
parallel reconstructions. [m] ey [m]

See More Results & Animations:

Future Plans [E

* Further algorithmic improvements like
compressive-sensing.

e 2.5-D and 3-D extensions (not trivial because of
computational requirements).

* Real measurement data will be used for imaging.
Not trivial because of noise, calibration, etc.




