A Programming System for Future
Proofing Performance Critical Libraries

Li-Wen Changl, Izzat El Hajjl, Hee-Seok Kim!, Juan Gémez-Luna?, Abdul Dakkak', Wen-mei Hwu!

"University of Illinois at Urbana-Champaign, *Universidad de Cérdoba
{Ichang20,elhajj2,kim868} @illinois.edu, ellgoluj@uco.es, {dakkak,w-hwu}@illinois.edu

Abstract

We present Tangram, a programming system for writing performance-

portable programs. The language enables programmers to write
computation and composition codelets, supported by tuning knobs
and primitives for expressing data parallelism and work decom-
position. The compiler and runtime use a set of techniques such
as hierarchical composition, coarsening, data placement, tuning,
and runtime selection based on input characteristics and micro-
profiling. The resulting performance is competitive with optimized
vendor libraries.

1. Introduction

With heterogeneity becoming ubiquitous in modern computing
systems, performance-portability has become a growing concern.
Ideally, programs would achieve high performance on different
devices and device generations without software re-development.
However, portability requires architecture-neutral program rep-
resentation while performance requires architecture-specific cus-
tomization and tuning. These two conflicting goals that make the
ideal of performance portability challenging.

Architecture types and generations differ in many ways that
make optimizations non-portable. These differences include: gran-
ularity of parallelism, hierarchical organization of hardware, mem-
ory system features, resource size and abundance, and others. Var-
ious techniques have been proposed to tackle these differences.
Overexpressing parallelism in data-parallel workloads allows com-
pilers to coarsen work according to the granularity of parallelism
in the device [5, (7, [11]]. Nested parallelism with algorithmic choice
and recursive composition rules [3} |6] adapts programs to devices
with different hierarchies. Automatic data placement [/} 4] assigns
data structures to suitable memories based on memory system fea-
tures. Autotuning [2} [10} [12] selects optimal execution parameters
that match hardware resource constraints.

We present Tangram, a programming framework that integrates
many of these techniques into a single system and manages inter-
actions between them. Tangram programs express computation in
terms of interchangeable, composable, and tunable building blocks
called codelets. The language supports expressing computations
and composition rules interchangeably, supplies primitives for ex-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions @acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

PPoPP 16, March 12-16, 2016, Barcelona, Spain

Copyright © 2016 ACM 978-1-4503-4092-2/16/03. ... $15.00

DOI: http://dx.doi.org/10.1145/2851141.2851178

pressing data parallelism and work decomposition, and provides
syntax for creating tuning knobs. The compiler composes kernels
based on the device hierarchy and performs automatic data place-
ment and tuning, pruning the design space throughout to minimize
compilation time and the final number of candidates. The runtime
further prunes candidates based on properties of the input data and
low-overhead profiling to select a final candidate.

2. System Overview
2.1 Language

The Tangram language is built around spectrums and codelets.
A spectrum represents a unique computation, while a codelet is
a code fragment that implements that computation. A spectrum
can have multiple codelets all having the same name and function
signature, but different implementations. Qualifiers are used to
mark spectrums and codelets in code.

Codelets are atomic if they are self contained, and compound
if they compose/decompose work and invoke spectrums. Atomic
codelets can be scalar or vector. Scalar codelets are oblivious to
other parallel workers, while vector codelets can communicate and
synchronize with other workers in the same vector. Compound
codelets use built-in primitives to express data parallelism and work
decomposition. All codelets use built-in containers to facillitate
compiler analysis of memory accesses. Qualifiers are used to spec-
ify tunable parameters in code.

A detailed list of Tangram’s qualifiers, primitives, and built-in
containers as well as a full example can be found in [8].

2.2 Compiler

Figure E] shows the overall workflow of Tangram’s compiler and
runtime. For a given spectrum, the compiler composes codelets in
different combinations to produce multiple candidate ASTs, prun-
ing bad combinations along the way. For each AST, the compiler
makes data-placement decisions for each data structure and selects
values for each tunable variable. This phase also results in multiple
combinations of decisions which are pruned. The final result is a
set of candidate kernels which are passed to the runtime.

Composition involves choosing the compound codelet to per-
form the work decomposition at each level of hierarchy in the de-
vice except the lowest, then for each level choosing the atomic
codelet to perform the computation. Compound codelets are cho-
sen according to the decompositions that expose the most paral-
lelism, have the best locality, and provide the greatest tuning free-
dom. For atomic codelets, scalar or vector codelets are selected
based on availability of vectorization at the level. At each decision
point, multiple codelets can be selected which captures algorithmic
choice, and results in multiple output ASTs.

The candidate ASTs are traversed to generate the final candi-
date kernels. A data placement decision is made for each container

| AST Composition |

SPMP

4

Figure 1: Tangram workflow

s
=
£
o
© | Data Placement & Tuning |
Input Adaptation
)
€
=}
o

in the AST. A rule-based [1] data placement scheme is used, but
the framework can also support a model-based [4] scheme. A tun-
ing decision is also made for each tunable variable in the AST.
Tunable variables are usually vector widths or container partition
sizes which eventually specializes into traditionally tuned param-
eters (tile size, work-group size, coarsening factor, etc.). Tuning
variables are assigned based on a performance model which consid-
ers hardware vector width, cache/scratchpad size, occupancy con-
straints, etc. Different combinations of decisions result in multiple
candidate kernels which are finally passed to the runtime.

2.3 Runtime

Two actions are performed at runtime to select the final candidate:
input adaptation and profiling.

Input adaptation refers to selecting between kernels based on
properties of the input known at runtime. For example, deciding
between a kernel that places data in scratchpad memory and one
that doesn’t can be done based on whether the size of the input is
small enough. This is carried out via decision trees generated by
the compiler.

Profiling is performed via a novel technique called Simultane-
ous Productive Micro-Profiling (SPMP). SPMP runs candidate ker-
nels in parallel each on part of the device (hence, simultaneous).
Each kernel executes on a small portion of the input (hence, micro)
and its result contributes to the final output (hence, productive). The
performance of each partial kernel execution is evaluated and the
best kernel is picked to finish the job. This technique is described
in detail in [9].

3. Results

Clang was modified to support parsing Tangram qualifiers,
while containers and primitives were parsed as C++ template
classes/functions. Kernels were generated in C, OpenMP, and
CUDA and compiled with the ICC 15.0.2, OpenMP 4.0, and
CUDA 7.0 respectively. The evaluation platforms are an i7-3820
Sandy Bridge CPU, a C2050 Fermi GPU, and a K20c Kepler GPU.

Five applications were implemented in Tangram: scan, spmv,
dgemm, kmeans, and bfs. The references compared to are Thrust 1.9
for scan, MKL 11.2.2 and CUBLAS/CUSPARSE 7.0 for spmv
(CSR) and dgemm, and Rodinia 3.0 [[13]] for kmeans and bfs.

The results are shown in Figure[2] Tangram’s scan significantly
outperforms the reference, benefitting particularly from Tangram’s
ability to fuse mayp iterators during composition. Even with fusion
disabled (not shown in figure), it is still at least 50% faster due to
better tuning. Tangram’s spmv performs within 10% of all refer-

-
]

o
oo

i Frrry

N
o N M O
. . .

F T TTFTFTTr
/)"I/\/I rrrr

PP FF]

n Aﬂ‘m =l |

scan spmv dgemm kmeans bfs

i

4

Normalized Performance
(higher is better)

oOFermi (Reference) mFermi (Tangram) OKepler (Reference)
D Kepler (Tangram) BCPU (Reference) @ CPU (Tangram)

Figure 2: Tangram Performance Results

ence implementations. It succeeds at prefetching data during data
placement which is key for good performance in this app. Tan-
gram’s dgemm performs within 30% of all reference implementa-
tions. This benchmark is bound by instruction throughput and ref-
erences write assembly which is hard to compete with. Tangram’s
kmeans significantly outperforms the reference, mainly due to find-
ing a better loop ordering for locality. Tangram’s bfs performs
within 10% of all reference implementations. It chooses to paral-
lelize both vertex status checking and edge index fetching whereas
the reference serializes the latter.

4. Acknowledgements

This work is supported by the Starnet Center for Future Archi-
tecture Research (C-FAR) and the DoE Vancouver Project (DE-
FC0210ER26004/DE-SC0005515).

References

[1] B. Jang et al. Exploiting memory access patterns to improve mem-
ory performance in data-parallel architectures. IEEE Trans. Parallel
Distrib. Syst., 22(1):105-118, 2011.

[2] D. Merrill et al. Policy-based tuning for performance portability and
library co-optimization. In InPar, pages 1-10, 2012.

[3] G. Blelloch. NESL: A nested data-parallel language. Technical report,
Pittsburgh, PA, USA, 1992.

[4] G. Chen et al. PORPLE: An extensible optimizer for portable data
placement on GPU. In MICRO, pages 88-100, 2014.

[5] H.-S. Kim et al. Locality-centric thread scheduling for bulk-
synchronous programming models on cpu architectures. In CGO,
pages 257-268, 2015.

[6] J. Ansel et al. Petabricks: A language and compiler for algorithmic
choice. In PLDI, pages 3849, 2009.

[7] R. Karrenberg and S. Hack. Improving Performance of OpenCL on
CPUs. In CC, pages 1-20, 2012.

[8] L.-W. Chang et al. Tangram: a high-level language for performance
portable code synthesis. In In Programmability Issues for Heteroge-
neous Multicores, 2015.

[9] L.-W. Chang et al. Dysel: Lightweight dynamic selection for kernel-

based data-parallel programming model. In ASPLOS, 2016 (in press).

[10] M. Piischel et al. Spiral: A generator for platform-adapted libraries of
signal processing alogorithms. International Journal of High Perfor-
mance Computing Applications, 18(1):21-45, 2004.

[11] P. Jddskeldinen et al. pocl: A performance-portable OpenCL imple-
mentation, 2014.

[12] R. C. Whaley et el. Automated empirical optimizations of software
and the atlas project. Parallel Computing, 27(1):3-35, 2001.

[13] S. Che et al. Rodinia: A benchmark suite for heterogeneous comput-
ing. In IISWC, pages 44-54, 2009.

	Introduction
	System Overview
	Language
	Compiler
	Runtime

	Results
	Acknowledgements

