
Hardware-Software Co-Design for an
Analog-Digital Accelerator for Machine Learning

Joao Ambrosi∗, Aayush Ankit†, Rodrigo Antunes∗, Sai Rahul Chalamalasetti∗, Soumitra Chatterjee∗,
Izzat El Hajj‡, Guilherme Fachini∗, Paolo Faraboschi∗, Martin Foltin∗, Sitao Huang‡, Wen-mei Hwu‡,
Gustavo Knuppe∗, Sunil Vishwanathpur Lakshminarasimha∗, Dejan Milojicic∗, Mohan Parthasarathy∗,

Filipe Ribeiro∗, Lucas Rosa∗, Kaushik Roy†, Plinio Silveira∗, John Paul Strachan∗

∗Hewlett Packard Enterprise, 1500 Page Mill Road, Palo Alto, CA 94304, USA
†Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN 47907, USA

‡University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Emails: {firstname.lastname}@hpe.com, {aankit,kaushik}@purdue.edu, {elhajj2,shuang91,w-hwu}@illinois.edu

Abstract—The increasing deployment of machine learning at
the core and at the edge for applications such as video and
image recognition has resulted in a number of special purpose
accelerators in this domain. However, these accelerators do not
have full end-to-end software stacks for application development,
resulting in hard-to-develop, proprietary, and suboptimal appli-
cation programming and executables.

In this paper, we describe software stack for a memristor-based
hybrid (analog-digital) accelerator. The software stack consists
of an ONNX converter, an application optimizer, a compiler, a
driver, and emulators. The ONNX converter helps leveraging
interoperable neural network models developed on frameworks
that support ONNX, such as CNTK, Caffe2, Tensorflow, etc. The
application optimization layer adapts these interoperable models
to the underlying hardware. The compiler generates executable
ISA code that the underlying accelerator can run. Finally, the
emulator enables software execution without actual hardware
which enables hardware design space exploration and testing.

By building a software stack, we have made hybrid memristor-
based ML accelerators more accessible to software developers,
enabled a generation of better-performing executables, and cre-
ated an environment that can be leveraged by a multitude of ex-
isting neural network models developed using other frameworks
to target these accelerators.

I. INTRODUCTION

The history of computing has seen analog [1], [2], [3], [4],
[5], digital [6], [7], [8], and hybrid computing [9], [10], [11],
[12]. Fueled by Moore’s law, digital computing in the last
four decades has become dominant. Hardware architectures,
instruction set architectures (ISA), operating systems, compil-
ers, software tools, and applications have all been developed
for digital computing. With the slowing down of Moore’s
law and the end of Dennard scaling, there is a renewed
interest in analog and hybrid analog-digital alternatives for
computing architectures. These alternatives require careful
hardware-software co-design if they are ever to gain traction
in the real world.

Machine Learning (ML) workloads have been the center
of attention for many new accelerator architectures due to
recent breakthroughs that made them pervasive in many ap-
plication domains. The architectures that have been proposed

have leveraged both digital computing [13], [14], [15], [16],
[17], [18] as well as hybrid digital-analog computing using
memristive crossbars [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28]. The reason memristive crossbars have been
particularly attractive is their ability to perform low-energy and
low-latency Matrix Vector Multiplication (MVM) operations
by leveraging analog circuit behavior [29], [30], [31], [32],
[33], [34]. Moreover, their high storage density allows storing
large matrices on chip, in contrast with digital alternatives
which have lower storage density, thereby incurring off-chip
accesses which are detrimental in the absence of data reuse
which MVM operations are notorious for. Since many ML
workloads perform a large number of MVM operations, hybrid
accelerators that use memristor crossbars are a great match.

Of the many hybrid accelerators proposed that use mem-
ristor crossbars, some are application specific while others
are configurable for a limited set of applications. None of
these accelerators are ISA programmable. A key challenge for
building an ISA-programmable accelerator is the absence of
a software stack to support it. ML applications are developed
independently of the underlying hardware or for specific hard-
ware without the notion of interoperability. This is especially
true for optimizations at different levels of the stack, including
quantization and precision. Moreover, accelerators are con-
sidered slave devices without the flexibility to transparently
scale solutions up and down, share accelerator devices across
applications and users, and offer device-to-device interaction.
Finally, in a wide and competitive market with a plethora
of ML model libraries, it is required to have a flexible
stack that can be optimized at the level of the application
(e.g. ONNX model), compiler, device driver, or even the
ISA. Without these components, it is not possible to achieve
competitive performance across interoperable applications and
end-hardware.

To address these challenges, we present a software stack
to support hybrid analog-digital accelerators that are ISA-
programmable. Our stack supports interoperability with the
ONNX standard and includes an optimization layer, a com-

978-1-5386-9170-0/18/$31.00 ©2018 IEEE

1

Tensorflow CNTK Caffe2
….

onnx-tf onnx-cntk onnx-caffe

Development
frameworks

Software
Stack

FPGA Memristor-
based DPE

onnx interpreter

compiler

driver

emulator

app optimization

Interoperable
models

Hardware ….hybrid
accelerator

other types of
accelerators

Applications

Fig. 1. Hybrid Accelerator Architecture

piler, a device driver, and emulators. An overview of this
software stack is illustrated in Fig. 1.

We make the following contributions:

• An ONNX interpreter for translating ONNX models
into our native graph representation to enable models
developed for a plethora of DL frameworks to use our
software stack.

• A set of optimization techniques applied at different levels
of the stack to optimize execution for our target class of
accelerators.

• A compiler for translating high-level machine learning
model representations to an example ISA, mapping the
execution of workloads onto cores and tiles.

• An operating system driver that abstracts away the hard-
ware implementation of accelerators and enables the
software stack to run several inferences in pipeline and
fully customize activation functions to gain performance.

• A set of emulators: (a) a performance evaluation simula-
tor that incorporates the basic functionality, timing, and
power models of the architecture to enable performance
prediction and design space evaluation; (b) A detailed
functional simulator, that enables hardware development
by comparing the state with hardware design tools; and
(c) a plugin into QEMU to enable software development.

The rest of the paper is organized in the following manner.
Section II provides a high-level overview of the target class of
hybrid accelerator architectures and an example ISA assumed
in this paper. Section III describes the ONNX interpreter.
Section IV describes the application optimizations. Section V
describes the compiler implementation details. SectionVI de-
scribes the driver. Section VII describes the emulator. Sec-
tion VIII describes and discusses interoperability and accel-
erator prototypes. Section IX discusses projected performance
of our hybrid accelerator. Section X compares our work to
related work. Section XI concludes and presents future work.

Network-on –Chip (NoC)

Tile 1

Tile Memory

Core 1

…

Crossbar 1 Crossbar N

ALU Register File

Core M

…

Crossbar 1 Crossbar N

ALU Register File

…

Tile T

Tile Memory

Core 1

…

Crossbar 1 Crossbar N

ALU Register File

Core M

…

Crossbar 1 Crossbar N

ALU Register File

…

Fig. 2. Architecture Overview

II. ARCHITECTURE AND ISA

This section provides a high-level overview of the abstract
hybrid accelerator architecture and example ISA assumed
in this paper. Actual accelerator designs may have different
implementation details and optmizations. Our objective here is
to provide an abstract baseline design to motivate our proposed
software stack.

A. Architecture Overview

Fig. 2 shows a high-level diagram of the hierarchical archi-
tecture of the hybrid memristor-based accelerator we assume.
At the lowest level, N memristor crossbars are grouped into
a single core which also contains a register file and an ALU
for non-MVM computations. At the next level, M cores are
grouped into a single tile with access to a shared tile memory.
At the highest level, T tiles are connected via a network-
on-chip that enables message passing between tiles within a
single node. For large scale applications, multiple nodes can be
connected using chip-to-chip interconnect such as CCIX [35],
Gen-Z [36], or OpenCAPI [37].

We assume that both cores and tiles in the architecture
can execute instructions. An example ISA is described in the
following subsections.

B. Core ISA

Fig. 3 summarizes the set of core instructions. The in-
structions are categorized into compute, data movement, and
control flow instructions. These instructions are described in
the rest of this section.

Compute Instructions Fig. 3(a) shows the ISA encoding
of an MVM instruction which orchestrates the execution
of an MVM operation on a crossbar, including digital-to-
analog conversion, analog MVM execution, and analog-to-
digital conversion. The mask operand specifies the crossbars
in the core that will be active during the MVM operation. Note

5 5 10 10 10 6

mvm mask

alu aluop dest src1 src2 src3

alui aluop dest src1 immediate

(a)

(b)

(c)

set dest immediate

copy dest src1

load dest src1 ld-width

store dest src1 count st-width

(d)

(e)

(f)

(g)

jmp pc

brn brnop src1 src2 pc

(h)

(i)

C
o

m
p

u
te

D
at

a
M

o
ve

m
en

t
C

o
n

tr
o

l

Fig. 3. ISA Encoding of Core Instructions

that the MVM instruction is what uses the analog units in the
core (crossbars) while all remaining compute instructions are
performed with digital units.

Fig. 3(b) shows the ISA encoding of the alu instruction for
computing non-MVM vector operations. The aluop operand
specifies the type of vector operation. The dest, src1, and
src2 operands are references to the destination and two source
registers respectively. The src3 operand is used to specify the
third register for left and right shift operations. Fig. 3(c) shows
the ISA encoding of the alui instruction which is similar to
the alu instruction, but takes one immediate operand instead
of src1 and src2.

Data Movement Instructions Fig. 3(d) shows the ISA
encoding of the set instruction that writes an immediate to
a data memory location. This instruction is used to initialize
addresses used by load and store instructions as well as fixed
program parameters such as loop bounds. Fig. 3(e) shows
the ISA encoding of the copy instruction that moves data
between the register file and the crossbar input/output registers.
Fig. 3(f) and (g) show the ISA encoding of the load and store
instructions respectively for accessing the tile memory. The
count operand in the store instruction specifies the number of
times the target memory location will be read before it can
be rewritten which is used for synchronization. The ld-width
and st-width operands specify the length of data to be read or
written.

Control Flow Instructions Fig. 3(h) and (i) respectively
show the ISA encoding of the two supported control flow
instructions, unconditional jump (jmp) and conditional branch
(brn). Both instruction take a pc with the target instruction
address. Additionaly, brn takes a brnop that specifies the
branch condition (equal, not-equal, etc.) and src1 and src2
which are operands for the condition evaluation.

C. Tile ISA

Fig. 4(a) and (b) shows the ISA encoding of the send and
receive instructions used to enable communication between
tiles via the NoC. The memaddr operand specifies the tile
memory location where the data to be sent resides or the

2 16 8 16 4

send memaddr vtile-id target sen-width

receive memaddr vtile-id count rec-width

(a)

(b)

Fig. 4. ISA Encoding of Tile Instructions

data to be received should be written. The vtile-id operand
specifies the virtual ID of the sender tile with respect to
the receiving tile. The target operand in a send instruction
specifies the target tile to which the data is sent. The count
operand in the receive instruction specifies the number of
times the target memory location will be read before it can be
rewritten, similar to store instructions. Finally, the sen-width
and rec-width operands specify the number of data packets to
be sent/received.

III. ONNX INTERPRETER

The popularity of ML applications, especially neural net-
works and deep learning, has stimulated the emergence of
multiple programming frameworks for supporting these ap-
plications. Effectively, these frameworks are Domain Spe-
cific Languages (DSLs) for building execution models. Some
widely adopted frameworks include:
• Microsoft Cognitive Toolkit (CNTK) [38]: a deep learn-

ing framework for Python, C#, and C++ capable of
parallelization across multiple GPUs and servers.

• Caffe2 [39]: a deep learning framework initially devel-
oped by the Berkeley AI Research group, designed for
scale and mobile deployments.

• Tensorflow [40]: Google’s framework aimed for flexible
deployment across different platforms like GPUs, CPUs,
and TPUs [18] on mobile and edge devices.

• Many other frameworks, such as MXNet, PyTorch,
Theano, PaddlePaddle, Apache Singa, Apache Mahout,
Accord.NET, Brainstorm, etc.

While some of the frameworks target specific hardware
platforms, providing better performance, others provide bet-
ter interoperability across multiple hardware, and yet others
provide abstractions for easier model development. However,
all of them follow the same computation representation model,
a computational graph.

The need to enable model exchange between different
frameworks was motivated by the difficulty to optimize per-
formance of frameworks on different hardware platforms.
To solve neural network model interoperability, a couple of
initiatives where launched to help define an exchangeable
format for neural network models [41], [42]. The Open Neural
Network Exchange Format (ONNX) [41] has resulted in an
initial interest and engagement of the open source community
and industry, supporting most of the known frameworks.
Therefore, we chose this format to integrate into our software
stack solution. ONNX provides a well defined architecture and
enough support for a reliable model format to enable interop-
erabililty with a variety of frameworks for our hardware.

ONNX is defined as an open specification and is organized
into two main components: front-end and back-end. The front-
end is an interface for framework integration. It defines the

standard types and built-in operators that are supported by the
model, and the rules that should be applied for generating
a computation graph model from any given framework to
the ONNX format. The back-end defines how a framework
or runtime platform should read and interpret an ONNX
model. Therefore, the software stack solution we propose
includes an ONNX back-end which gives us access to models
implemented in other frameworks that have ONNX front-ends.

The back-end provides the means through which a frame-
work should interpret and possibly execute a model. Currently,
it has been used by multiple platform providers as a means
to execute ONNX models on their platform, without the need
to translate to a framework representation and then execute.
Its interface provides two main methods that should be imple-
mented: prepare and run, following the general frameworks
pattern of executing a neural network model (initialize graph,
prepare graph IO, execute graph)

The method prepare has as input the model and the graph
in the ONNX representation format. Its main objective is to
translate the model from ONNX format to the appropriate for-
mat of a framework or execution platform, cross-compiling the
ONNX code to the desired back-end implementation. Besides
the model compilation, in this method many optimizations are
applied in order to modify the execution graph to make better
usage of the execution platform.

The method run provides the interface for loading the model
into the platform, input preparation, inference execution, and
finally, the collection of the outputs. The IO process provides
the means for giving inputs to the graph and reading the
outputs, while the execution loads the translated model graph
to the desired platform (hardware of software).

In our solution, an initial version of the prepare method was
developed to interpret ONNX models and generate a native
graph representation that can be operated on by our compiler
(Section V) to generate ISA code. On the other hand, the
initial version of the run method was developed to execute
the compiled models on our emulator (see Sections VII and
VIII-C).

IV. APPLICATION OPTIMIZATION

The software stack presented herein provides multiple layers
where different optimization techniques can be applied to
improve performance by adapting the models to the underlying
hardware. Quantization is required to properly prepare models
to execute on the accelerator with little or no loss of accuracy,
otherwise, just a simple type casting between default host
types (e.g. Float32, Integer32, etc.) to the memristor-based
accelerator precision would cause loss of accuracy of the
trained weights. Node aggregation and replication aim to make
better usage of the dataflow accelerator resources. While the
first technique removes unnecessary operations, consequen-
tially, cores and tiles allocation, the second technique makes
better usage of the memristor units. This section describes
the techniques that were explored and at which level each is
applied.

0.0

8.0

16.0

24.0

32.0

40.0

0.0

2.0

4.0

6.0

8.0

10.0

64 32 16 14 12

Ti
m

e
(u
s)

En
e

rg
y
(u
J)

bits

Energy

Time

Fig. 5. Quantization Results

A. Quantization

Quantization enables large and complex types (like 32-bit
floating points) to be represented using smaller and simpler
types (like 16-bit integers) with almost no accuracy loss [43].
It has been widely applied [44], [45], [46], [47] at the edge
to optimize models for reduced memory footprint, faster
inference and lower energy consumption.

Our software stack enables automatic quantization of pre-
trained neural network models based on normalization values
provided by the user. For simple models, like MLPs and
RNNs, the automated quantization does not significantly im-
pact the accuracy of inference. The tests conducted with a
compound GRU-MLP model have shown an accuracy drop
of less than 0.1% after applying an 8-bit quantization. For
more complex models, like CNNs, it is necessary to perform
a more robust calibration in order to fine tune the quantization
in order to minimize the accuracy loss. This has not yet been
performed and is the subject of future work.

In our stack, quantization is applied at the execution models
through specific operations, such as:
• clip(vector, min, max) - Saturate values greater than max

and less than the min to max and min respectively.
• normalize(vector) - adjust values distribution
These operations are added to the model whenever it is

necessary to calibrate tensors between layers.
Fig. 5 shows the impact of quantization (number of bits

for input and model representation) on energy consumption
and execution time for a MLP model. A reduction in the
number of bits used for model representation (weight data)
results in a proportional reduction in the number of memrsitive
crossbars used. A reduction in the number of bits used in the
input results in a reduction in number of memristive crossbar
operations and reduces the cost of ALU and memory access.
Consequently, these enable lower energy consumption and
faster execution per inference. These results were obtained
using our performance simulator (see Section VII).

B. Node Aggregation

To take the most advantage of the memristor-based accelera-
tor, it is desirable to increase the amount of MVM operations
performed by a model. Since many neural network models
execute the basic perceptron operation (A) below multiple
times, we perform the operations aggregation to become (B)

𝑤11 𝑤12
𝑤21 𝑤22

×
𝑥1
𝑥2

+
𝑏1
𝑏2

=
𝑤11𝑥1 + 𝑤12𝑥2 + 𝑏1
𝑤21𝑥1 +𝑤22𝑥2 + 𝑏2

𝑤11 𝑤12
𝑤21 𝑤22

𝑏1
𝑏2

×
𝑥1
𝑥2
1

=
𝑤11𝑥1 + 𝑤12𝑥2 + 𝑏1
𝑤21𝑥1 + 𝑤22𝑥2 + 𝑏2

(A)

(B)

Fig. 6. Weights and Biases aggregation

with the proper matrix/vectors modifications (see Figure 6).
(A) vector<input>* matrix<weights>+ vector<bias>
(B) vector<input>* matrix<weights>

In the same idea some layers like batch normalization can
be aggregated into the convolution, decreasing the number of
non-MVM operations in the model.

C. Layers Replication

To improve hardware utilization and to increase perfor-
mance, layers of the model can be replicated. Depending on
the goal and the availability of resources, specific layers can
be replicated or the entire model.

One reason to replicate layers is to balance the dataflow
architecture’s pipeline [24]. In some types of neural networks,
the last layers depends on data from the previous layers. For
example, computing a convolutional layer requires an amount
of data from previous layers that at least matches kernel size.
When the pipeline is not balanced, the last layers tend to stay
idle several cycles waiting for data to be produced by the
earlier layers. This idea can be generalized to replicate any
layer that is causing performance bottlenecks in the pipeline
while there are unused or dormant resources available.

When the pipeline of the model is balanced and there are
still enough resources, the entire model can be replicated,
allowing an increase in the number of inferences per second.
For example, suppose a model that fits in a single tile and a
node that has a total of 5 tiles. The model can be replicated
4 times, occupying all 5 tiles, allowing the inferences to run
in batches of 5 inputs, resulting in 5 outputs per inference.
Only a minimal increase in latency is expected due to layer
synchronization and data distribution in the beginning and in
the end of the inference since the models are independent and
do not communicate among each other during the execution.

The degree and granularity of replication can be adjusted to
meet the performance and power requirements. For example,
only a certain amount in the first layers could be replicated
to balance the pipeline, and then whole-model replication
could be applied to fill the node, thereby increasing overall
throughput.

V. COMPILER

The compiler generates ISA code from a graph representa-
tion of a neural network model that is either constructed by
the ONNX back-end or specified by the programmer via our
custom API. The compilation flow is shown in Fig. 7. This
section describes each of the compiler stages.

Graph
Partitioning

Data
Communication

Tile Placement
Memory

Allocation

Linearization
Register

Allocation

Partition to
Crossbars

Partition to
Cores

Partition to
Tiles

Insert
Loads/Stores

Insert
Sends/Receives

Insert
Copies

ISA Code
Generation

Fig. 7. Compilation Flow

A. Graph Partitioning

In the first stage of compilation, the graph is hierarchically
partitioned and the operations in the graph are distributed
to different crossbars, cores, and tiles. The hierarchical par-
titioning uses a bottom-up approach whereby the graph is
first partitioned to crossbars, then to cores, then to tiles.
The partitioning process starts by assigning all MVM oper-
ations that use the same constant matrix to the same virtual
crossbar. Virtual crossbars, cores, and tiles are used at this
stage for separation of concerns; they are mapped to physical
crossbars, cores, and tiles at a later stage. Next, each non-
MVM operation is assigned affinity to a virtual crossbar by
recursively spreading the virtual crossbar affinity from each
MVM operation to all source (and destination) operations
that feed exclusively into (and out of) that MVM operation.
When an operation is reached that has multiple source (or
destination) operations each with affinity to different virtual
crossbars, heuristics are used to resolve which virtual crossbar
to assign those operations to. Once each operation in the graph
has been assigned affinity to a virtual crossbar, the first level
of partitioning is complete. The graph is now composed of
sub-graphs where each sub-graph represents the operations
assigned to a virtual crossbar.

The second level of partitioning treats each sub-graph as a
node in a graph and aggregates the edges across sub-graphs
into a single edge. This new graph is then partitioned, group-
ing together nodes (i.e., virtual crossbars) that communicate
frequently into the same sub-graph (i.e., virtual cores). The
partitioning is done by passing the graph to a third-party graph
partitioning software such as KaHIP [48] and supplying it with
the necessary constraints, namely, the maximum number of
nodes per sub-graph (i.e., number of crossbars per core). The
second level of partitioning is thus completed.

The third level of partitioning is very similar to the second.
Sub-graphs from the second level are treated as nodes, edges
are aggregated, the new graph is partitioned whereby each
sub-graph represents a set of frequently communicating cores,
limited by the maximum number of cores in a tile.

An alternative to this bottom-up hierarchical partitioning
approach is a top-down approach where the graph is first
partitioned into sub-graphs for each tile, then each sub-graph
is partitioned into sub-graphs for each core, and then the same

for crossbars. Exploring this alternative approach is the subject
of future work.

B. Data Communication

Once the graph has been partitioned, the compiler inserts
data communication operations between producer and con-
sumer operations assigned to different cores and tiles. For all
producer-consumer edges going across cores, we insert a store
operation on the producer core and a load operation on the
consumer core, making sure to avoid redundant operations. If
a producer has multiple consumers, only one store operation
at the producer core is created and only one load operation
per consumer core is created, thereby avoiding redundant load
and store operations. After stores and loads are inserted, we
identify all store-load edges going across tiles and insert a
send operation on the storing tile and a receive operation on
the loading tile. If a store has multiple loads, only one send
operation and one receive operation is created per loading
tile, thereby avoiding redundant send and receive operations.
Finally, there is also a need to communicate data across
register spaces within a core (crossbar input/output registers
and the register file). Whenever there is a mismatch between
the register spaces of a producer and consumer operation,
intermediate copy instructions are inserted.

C. Tile Placement

Once operations have been assigned to crossbars, cores, and
tiles and the data communication has been figured out, the
virtual tiles are placed on physical tiles. In this placement,
it is important to place tiles that communicate frequently
with each other closer together to minimize communication
distance. This problem is NP-complete and requires the use
of heuristics. The heuristic currently used places the tiles in
the order that their matrices are used by the program, which
captures the order of layers in the neural network. Therefore,
adjacent layers which communicate frequently get placed on
adjacent tiles.

Once virtual tiles are mapped to physical tiles, the virtual
cores within the virtual tile are mapped to the physical cores in
the physical tile. This mapping is trivial because the physical
cores within a physical tile are logically equidistant to each
other. Finally, the virtual crossbars within a virtual core are
mapped to the physical crossbars within a physical core.
Again, this mapping is trivial because the physical crossbars
within a physical core are logically equidistant.

D. Memory Allocation

Memory allocation is performed by allocating a new tile
data memory location for every store and receive operation
performed on a tile. The compiler does not currently support
reuse of memory locations. Doing so would require a tile-
wide analysis of load and store order after linearization (Sec-
tion V-E) to prevent data hazards. We leave this optimization
as future work.

E. Linearization and Register Allocation

The next stage of compilation is linearization. In this stage,
the graph is linearized into a sequence of instructions for
each tile and core. Linearization ensures that source operations
are placed before destination operations in the instruction
sequence to guarantee correctness.

Up to this point, virtual registers have been used. Once
linear instruction sequences have been generated for each core,
it becomes possible to analyze the live ranges of the virtual
registers. Doing so enables register allocation for each core
with register reuse for non-conflicting live ranges.

F. Code Generation

The final stage is to generate assembly code for each tile
and core from the linearized instruction sequences. We have
leveraged the standard 64-bit Executable and Linkable Format
(ELF) file format specification to develop an ELF format
for NN applications which includes the weights, biases, and
activation functions that can be accessed by the runtime. The
compiler can also optionally generate a plain-text assembly
listing, which can be compiled into an ELF executable using
the standalone assembler. The loader has been architected to
understand this ELF format and works in a tightly coupled
fashion with the driver to load instructions and data from the
ELF executable to the device, abstracting away device specific
features.

G. Error Handling

The DSL and the compiler provide several value adds
and failsafes to aid rapid software development, while safe-
guarding the programmer from common programming pitfalls.
For example, the compiler automatically detects input/output
tensors without the programmer having to explicitly declare
them as such. Further, the compiler diagnoses unused tensors,
thus avoiding inadvertent programming errors and conserving
precious device memory. The DSL also implements safeguards
against out-of-scope tensors used in the model, thus preventing
hard to detect runtime issues.

VI. DRIVER

Most accelerators are implemented as devices on a PCI card
connected to a PCIe bus. Therefore, a device driver is required
to provide access to these accelerators. The device driver is
the layer in the software stack responsible for managing the
accelerator. It enables loading tile instructions, core instruc-
tions, weights in the crossbars as well as sending input data
to the device and returning back the output data to the software
stack. This way, it manages the inference execution.

Besides the functionality typical of a device driver, such as
providing access to the device, its status, performance data, as
well as sharing the device among several running applications,
our device driver is designed to keep the maximum usage
of the device increasing the throughput for streaming-based
application or in-batch executions. The device driver manages
a pipeline of running inferences to reach that goal. So, instead
of waiting for completing an inference before starting running

Inference 5 Inference 4 Inference 3 Inference 2

T15

Input Layer

Layer 1

Layer 2

Output Layer

T1 T2

T0

T5 T6

T3 T4

T13 T14

T11 T12

T9 T10

T7 T8

Layer 3

Inference 1

T15

T1 T2

T0

T5 T6

T3 T4

T13 T14

T11 T12

T9 T10

T7 T8

T15

T1 T2

T0

T5 T6

T3 T4

T13 T14

T11 T12

T9 T10

T7 T8

T15

T1 T2

T0

T5 T6

T3 T4

T13 T14

T11 T12

T9 T10

T7 T8

T15

T1 T2

T0

T5 T6

T3 T4

T13 T14

T11 T12

T9 T10

T7 T8

Executed in previous cycle Under execution To be executed in next cycles

Fig. 8. Inferences running in pipeline

another one, the device driver monitors when the initial tiles
get available as soon as the running inference goes deeper
in the neural network layers, and it starts running another
inference (see Fig. 8). Doing this in the driver simplifies the
job of the programmer and compiler because they do not have
to worry about implementing/generating streaming logic.

In addition, the device driver constantly monitors the device
to ensure the concurrent write of inputs and read of outputs
does not result in any output or input data loss. Once the PCIe
bus becomes a bottleneck, the device driver has to hold starting
the next inference to ensure no overwrite of the data that is
running inside the device.

Another important aspect of the device driver is the cus-
tomization of activation functions. Such activation functions
are implemented as look-up tables to save process time and
avoid unnecessary complexity. The device driver allows the
software stack upper-layer to load fully customized look-up
tables. This way different values and different ranges for each
activation function can be dynamically adjusted. The look-up
tables can be customized per core of any tile given a fully
customized mechanism to address the needs for an application.

VII. EMULATORS AND SIMULATOR

We have implemented two types of emulators and one
simulator to enable the development and optimization of
the software stack. These components are key to verify the
performance and behavior of the hardware, architecture, and
ISA of memristor-based accelerators. Fig. 1 shows how the
emulators fit in the software stack architecture.

A. Performance simulator

To evaluate characteristics of the hardware, such as perfor-
mance and power utilization, we have developed a hardware
simulator. The simulator simulates the execution of ISA in-
structions, such as those presented in Section II, to collect
information about performance and energy and to enable
design-space exploration. It was used, for example, to measure
the data reported in Fig. 5 and 11.

Fig. 9. Single instruction execution

B. Functional emulator

The functional emulator implements only high level hard-
ware components, such as cores, tiles, and memories with
focus on behavior. The emulator executes one instruction
at a time following an ISA specification. It abstracts sub-
cycles or internal pipeline specific of hardware architecture
implementation. A state of the emulated device is stored and
each instruction modifies the device to a new state. Examples
of elements that compose the device state are: data and
metadata of tile memories, register files, crossbar weights,
input and output registers of crossbars, tile and core program
counter (PC) register, etc. (see Fig. 9.)

The hardware characteristics such as the number of tiles,
number of cores per tile, tile memory size, register file size,
and crossbar size are configurable parameters. This flexibility
can be used for design exploration, experimentation of param-
eters, tuning compiler heuristics, etc.

The functional emulator was used to collect the data in
Fig. 12. It helps evaluate the correctness of models developed
by checking whether the results of inferences have expected
values.

C. QEMU emulator

A QEMU emulator implements the interface for QEMU
hypervisor, emulating the accelerator as a PCI device. The
QEMU hypervisor has also been enhanced to take advantage of
device characteristics. This includes support for Configuration
Space Registers (CSR) in the device and in PCI space. A
full-fledged system emulator also helps to anticipate hardware
architecture requirements by the software stack evaluating the
functionality required by NN models. We used the QEMU
emulator to verify the driver functionality and emulate end-
to-end integration of the stack.

VIII. IMPLEMENTATION

A. Memristor-based Prototype Implementation

We developed a cycle-level simulator written in Python
that implements the abstract architecture and example ISA
for the hybrid analog-digital architecture described in Sec-
tion II. The hybrid architecture executes MVM instructions

CNTK Tensorflow

Tools, emulators

Driver

Compiler

Accelrator-specific
Application Optimization

ONNX

CNN RNN MLP

Fixed-point algebra

Replication

Cores/Tiles, Phys-virt.
Partitioning,

Pipelining

Caffe2 PyTorchFrameworks

Performance
Functionality

Etc

LSTM DRN GRU

MXNET

DFF …..Neural network types

Accelerators

Interchange format

Our Acc.Accelerator 1 Accelerator NAccelerator 2

Fig. 10. Interoperability

in analog domain using memristive crossbars. The physical
implementation of this hybrid system has been experimentally
demonstrated in [34] and fully supports the assumptions in
the present work. A memristive crossbar sums up the currents
from each cross-point to a column (Kirchhoff’s law), where
the cross-point’s current output is the product of input voltage
and programmed conductance (Ohm’s law). Additionally, each
crossbar is interfaced with Digital-to-Analog converter (to
feed digital input from SRAM buffer) and Analog-to-Digital
converter (to obtain digital outputs for subsequent computation
and communication). The simulator consists of a behavioral
model (functionality, power and timing) for MVM instruc-
tion using input bit-streaming and weight-slicing as proposed
in [24]. ALU instructions are executed on digital CMOS
units. The datapath was designed at RTL-level in Verilog
and synthesized at IBM 45nm SOI technology to extract the
power, area and timing models. Subsequently, the model was
integrated with the simulator for evaluation of practical sized
workloads.

B. All-digital Prototype Implementation

We have also developed a fully digital implementation of
this architecture, and tested it on an FPGA. This can be
easily ported to an ASIC fabricated in a conventional CMOS
process. The only difference between fully digital and hybrid
analog-digital implementations is in the execution of MVM
instruction. While in the memristor implementation an output
vector element can be calculated in a single clock cycle by
adding electrical currents across all memristor row elements
connected to a given column, in a digital implementation we
step over input rows sequentially. In each step we accumulate
in a digital adder the result from the previous step with a
product of the present row input and column weight, com-
puted by a digital multiplier. The weights are read from an
on-die SRAM memory. Since different matrix columns are
independent and use the same row inputs, in both imple-
mentations we compute multiple output vector elements in
parallel. The micro-architectural details of this implementation
are transparent from the core level perspective. The only
difference is in the execution time at the same clock frequency,

TABLE I
SOFTWARE STACK REUSABILITY

Stack Accelerator-specific Reusable

Application
optimization

layers replication
(to balance pipeline)

quantization
node aggregation
model replication

Compiler
linearization
register allocation
code generation

graph partitioning
data communication
tile placement

Driver accelerator inner cntrl
pipelining OS to accelerator

ISA

Architecture
.

inter-core data movement

MVM w/ crossbars; ALU
inter-core synchronization

compute; control; intra-core movement

instruction exec. pipeline
architecture hierarchy

the MVM instruction takes longer to complete in the digital
implementation.

C. Interoperability

ONNX standard enables interoperability between different
neural network frameworks on one side and a plethora of
accelerators on the other (see two yellow triangles on Fig. 10).
Models developed on one framework can be exported and then
imported into another one. Similarly, plugins for different ac-
celerators enable development of models only against ONNX
and then running them on all accelerators for which there are
ONNX plugins.

Our primary motivation for using ONNX was to leverage
models developed on multiple frameworks (see blue triangle
on Fig. 10). It was less so to leverage the software stack
across other accelerators (see red triangle on Fig. 10). We
have experience in using our software stack only for the two
prototype implementations (memristor-based and all digital).
To give some preliminary assessment of what parts of software
stack are specific to our accelerator and which are re-usable
across other accelerators, we broke down the implementations
of stack components in Table I.

D. Discussion

Characterization of the digital implementation performance
on an FPGA will be one of future steps. Preliminary pro-
jections from FPGA to an ASIC look encouraging. Thanks
to the single-step analog computation of output vector ele-
ments, the memristor implementation will achieve even higher
performance at lower power consumption. This is despite
compromises described in [24] to reduce memristor resolution
and ADC precision requirements. During FPGA development,
we found it important to optimize hardware for fast execution
of load, store, copy, and alu instructions, to prevent them from
becoming performance bottlenecks. This has been done by
commonly used techniques–composing memories from mul-
tiple banks, parallelizing data accesses, optimizing datapath
widths, and pipelining alu execution. Similarly to other many-
core compute architectures, the ISA and RTL implementation
need to be simple to avoid excessive logic gate counts and chip
area, which would reduce performance per Watt. We found it
straight forward to leverage from parametrized RTL building
blocks (e.g., an instruction unit, execution control unit, etc.)
developed previously for other computing applications, sug-
gesting that the ISA architecture is not unusual or difficult to
implement in hardware.

13000

10000

20000

30000

40000

50000

28nm 16nm 7nm

Im
ag
es
/s

Performance scaling for ResNet‐50 Inference

Hybrid Accelerator

Best GPU

Fig. 11. Projected performance scaling of hybrid accelerator in commercial
silicon process at 50W power limit for ResNet-50 Convolutional Neural
Network inference, compared with NVidia Tesla P4

IX. RESULTS

Fig. 11 shows projected performance of our hybrid ac-
celerator at 50W power limit for ResNet-50 Convolutional
Neural Network inference at 28, 16, and 7nm silicon process
nodes. For comparison, performance of one of the best GPU
inferencing accelerators for the edge currently available on the
market (NVidia Tesla P4) is also shown. To give conservative
comparison, we show GPU results at batch size 128, which is
optimal for it’s performance. The GPU performance will be
lower at smaller batch sizes because model weights may need
to be re-loaded from a cache or an external memory for each
batch. Thanks to storing weights in-situ, our accelerator does
not require batching of input data. This leads to additional ad-
vantage: low inference latency. ImageNet data set is assumed
with 224x224 image size. The steeper scaling from 16 to 7nm
is due to higher power efficiency at 7nm. Note that at 16nm,
hybrid accelerator is projected to be 20x better in performance
than GPU, at less than 50% of GPU die size. Although we
expect further GPU architecture improvements in the next 1-3
years, we believe that hybrid accelerator can maintain 10x
performance advantage at 7nm. Accelerator implementation
with hybrid approach will be lower in cost thanks to smaller
die size and no need of an external DRAM memory (because
all weights are stored on-die).

In general, for neural network applications, we achieved
latency between 10 and 104 times better than CPUs and
between 10 and 102 better than GPUs; we achieved bandwidth
better than 103− 106 times compared to modern CPUs and
more than 10 times better than a modern GPU (when compared
at the same power) at a significantly lower cost. All of these
projections were conducted using performance simulator.

In Fig. 12 we show results of resource allocation for
a compound six layers GRU-MLP model execution in the
functional emulator of a hybrid accelerator. With the proposed
software stack we are building it is possible to establish
the number of Cores and MVMs, and also adjust the size
of MVMs to be used by an application, by the compiler
and at the functional emulator parametrization. This allows
flexibility in resources allocation for partition, distribution and
parallelization of models and layers to cores and tiles, as
well as for communication and power management of the

Fig. 12. Effect of number of Matrix Vector Multiplication Units in Cores
allocation for a GRU-MLP test model in functional emulator

accelerator subsystems.
The performance advantages reported here could not be

achieved without a sophisticated end-to-end software stack.

X. RELATED WORK

There are two efforts towards interoperability of neural
network models, ONNX [41] and NNEF [42]. ONNX is a
consortium driven by Microsoft, Facebook, and Amazon with
the original goal of exchangeable models across development
platforms. As recently they also focus on the target hardware
platforms. They also explore issues, such model optimization,
training of interoperable models, support for closed loops,
test and compliance with the standards, etc. These topics are
addressed by special working groups. The Khronos Group
Inc. released an NNEF specification [49]. NNEF encapsulates
network structure and network data. Format is both human
readable and parseable.

Many frameworks optimize the execution of ML workloads
on traditional systems, including DjiNN [50], an infrastructure
for DNN as a service, Caulfield et al. [51], a cloud architecture
for executing ML workloads on FPGAs, vDNN [52], a mem-
ory manager for virtualizing DNN memory usage for CPU-
GPU collaboration during training, PMEM [53], a processor
cache optimized for image processing, and Scalpel [54], a
system for performing SIMD-aware pruning of DNNs. Our
software stack targets special purpose accelerators for ML,
particularly those that use memristor crossbars.

Many hybrid accelerators that use memristor crossbars have
been designed [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28] but only some are configurable for a limited set of appli-
cations and none are ISA programmable. NEUTRAMS [55] is
a software stack for targeting configurable hybrid accelerators.
Our software stack targets ISA-programmable hybrid accelera-
tors. We have evolved our stack by building on our prior work
on this topic [56], [57].

There have been many digital-only accelerators designed for
machine learning applications [13], [14], [15], [58], [59], [60],
[61], [62], [63], [64], [65], [66], [67]. A comprehensive survey
and categorization of these works has been done by Sze et
al. [68]. Our software stack targets hybrid digital-analog accel-
erators. Some digital-only accelerators are fully programmable
via an ISA [69], [17], [70], [71], [18]. Some can be configured
with FPGAs [72], [73], [63], [67], [74], [75], [76], [77]. Our

software stack targets ISA-programmable hybrid accelerators
and includes a digital-only implementation on FPGA. Many
works propose additional architecture optimizations for digital-
only accelerators such as reducing weight/input precision [78],
[79], pruning weights to exploit sparsity [16], [80], [81], [82],
[70], [83], [84], [85], and others [86], [87], [88], [89], [90],
[91]. Our application optimization layer reduces precision of
models to make them suitable for memristor-based accelera-
tors.

Several works exploit near-memory computing using
DRAM [92], [93], [94] and SRAM [95], [96]. Erudite [97]
discusses rebooting the data access hierarchy to leverage near-
memory acceleration for cognitive applications. Our software
stack targets near-memory accelerators that use memristor
crossbars.

Memristors have also been used for building large byte-
addressable non-volatile memories for mainstream general-
purpose machines. Software support has been proposed for
such memory systems tackling issues of consistency in the
presence of failure [98], [99], [100], [101] and persistent object
representation [102], [103], [104].

Device drivers have always been complex software com-
ponents to develop due to the delicate timing and perfor-
mance issues, such as asynchronous behavior, delay depen-
dencies, race conditions, protocol violation due to the delays,
throttling of in/out going data, concurrency bugs at hard-
ware/software/firmware levels, and many others [105], [106],
[107], [108], [109], [110]. However they can also be enablers
in development of both hardware and software, especially
using virtualization techniques [111], [112], [113], [114].

There are numerous simulators at different scope, accuracy
and for different purposes [115], [116], [117]. In our work, we
have come up with a family of three simulators that fit different
phases of development (hardware, software, performance):
architectural emulator, QEMU simulator, and performance
simulator.

XI. CONCLUSION

In this paper, we present a complete software stack for a
programmable accelerator that uses hybrid CMOS-memristive
technology for energy-efficient acceleration of machine learn-
ing inference workloads. The software stack includes an
ONNX back-end for importing models from popular deep
learning frameworks, an application optimizer, a compiler for
generating an executable binary, a device driver for loading
weights and instructions as well as managing streaming work-
loads, and a functional emulator to assist with performance
and energy estimation and design space exploration.

The current stack is primarily targeted at inference ac-
celerators, as we believe this is where energy efficiency of
hybrid accelerators pays off first. Inference applications are
increasingly being deployed away from datacenters and to the
“edge”, where small devices are space and energy constrained.
However, hybrid accelerators are also being proposed that
support training. For this reason, our future work is to extend
our software stack to support programming training workloads.

REFERENCES

[1] Y. Tsividis, “Not your father’s analog computer,” IEEE Spectrum,
vol. 55, pp. 38–43, February 2018.

[2] G. D. Mccann, C. H. Wilts, and B. N. Loganthi, “Nonlinear functions
in an analog computer,” Electrical Engineering, vol. 69, pp. 26–26, Jan
1950.

[3] R. M. Gardner, “Analog computer simulates heart response to nerve
stimulation,” Electrical Engineering, vol. 80, pp. 979–982, Dec 1961.

[4] L. B. Wadel and A. W. Wortham, “A survey of electronic analog
computer installations,” IRE Transactions on Electronic Computers,
vol. EC-4, pp. 52–55, June 1955.

[5] R. H. Spiess, “Two reasons why a controls laboratory needs an analog
computer,” in 1986 American Control Conference, pp. 398–400, June
1986.

[6] T. A. M., “On computable numbers, with an application to the entschei-
dungsproblem,” Proceedings of the London Mathematical Society,
vol. s2-42, no. 1, pp. 230–265, 1936.

[7] J. von Neumann, “First draft of a report on the edvac,” IEEE Annals
of the History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[8] D. A. Patterson and J. L. Hennessy, Computer Organization and De-
sign, Fourth Edition, Fourth Edition: The Hardware/Software Interface
(The Morgan Kaufmann Series in Computer Architecture and Design).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 4th ed.,
2008.

[9] A. Hausner, Analog and analog/hybrid computer programming.
Prentice-Hall, 1971.

[10] G. Birkel, “Hybrid computers for process control,” Transactions of the
American Institute of Electrical Engineers, Part I: Communication and
Electronics, vol. 79, pp. 726–734, Jan 1961.

[11] J. A. Gibson and T. W. Marks, “Fast hybrid computer implementation
of the dynostat algorithm,” IEEE Transactions on Computers, vol. C-
21, pp. 872–880, Aug 1972.

[12] F. Vithayathil, “Hybrid computer simulation of wind-driven ocean
currents,” in Engineering in the Ocean Environment, Ocean ’74 - IEEE
International Conference on, pp. 308–313, Aug 1974.

[13] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Cu-
lurciello, “Hardware accelerated convolutional neural networks for
synthetic vision systems,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, pp. 257–260, May 2010.

[14] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, et al., “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 609–622, IEEE Computer Society, 2014.

[15] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Com-
puter Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on, pp. 367–379, IEEE, 2016.

[16] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-
power, highly-accurate deep neural network accelerators,” in Proceed-
ings of the 43rd International Symposium on Computer Architecture,
pp. 267–278, IEEE Press, 2016.

[17] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 393–405, IEEE Press, 2016.

[18] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, (New York, NY, USA), pp. 1–12, ACM, 2017.

[19] M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of bsb
recall function using memristor crossbar arrays,” in Proceedings of the
49th Annual Design Automation Conference, DAC ’12, (New York,
NY, USA), pp. 498–503, ACM, 2012.

[20] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and
A. Raghunathan, “Spindle: Spintronic deep learning engine for large-
scale neuromorphic computing,” in Proceedings of the 2014 interna-
tional symposium on Low power electronics and design, pp. 15–20,
ACM, 2014.

[21] Y. Kim, Y. Zhang, and P. Li, “A reconfigurable digital neuromorphic
processor with memristive synaptic crossbar for cognitive computing,”
J. Emerg. Technol. Comput. Syst., vol. 11, pp. 38:1–38:25, Apr. 2015.

[22] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang,
M. Barnell, Q. Wu, et al., “Reno: A high-efficient reconfigurable
neuromorphic computing accelerator design,” in Design Automation
Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2015.

[23] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learn-
ing,” in High Performance Computer Architecture (HPCA), 2016 IEEE
International Symposium on, pp. 1–13, IEEE, 2016.

[24] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A con-
volutional neural network accelerator with in-situ analog arithmetic in
crossbars,” in Proceedings of the 43rd International Symposium on
Computer Architecture, pp. 14–26, IEEE Press, 2016.

[25] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in Proceedings of the 43rd
International Symposium on Computer Architecture, pp. 27–39, IEEE
Press, 2016.

[26] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined
reram-based accelerator for deep learning,” in High Performance Com-
puter Architecture (HPCA), 2017 IEEE International Symposium on,
pp. 541–552, IEEE, 2017.

[27] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang, “Time:
A training-in-memory architecture for memristor-based deep neural
networks,” in Proceedings of the 54th Annual Design Automation
Conference 2017, p. 26, ACM, 2017.

[28] A. Ankit, A. Sengupta, P. Panda, and K. Roy, “Resparc: A recon-
figurable and energy-efficient architecture with memristive crossbars
for deep spiking neural networks,” in Proceedings of the 54th Annual
Design Automation Conference 2017, p. 27, ACM, 2017.

[29] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification by
memristive crossbar circuits using ex situ and in situ training,” Nature
communications, vol. 4, 2013.

[30] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev,
and D. B. Strukov, “Training and operation of an integrated neuro-
morphic network based on metal-oxide memristors,” Nature, vol. 521,
no. 7550, pp. 61–64, 2015.

[31] G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat,
R. S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. N.
Kurdi, and H. Hwang, “Experimental demonstration and tolerancing
of a large-scale neural network (165 000 synapses) using phase-
change memory as the synaptic weight element,” IEEE Transactions
on Electron Devices, vol. 62, pp. 3498–3507, Nov 2015.

[32] S. Yu, Z. Li, P.-Y. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and H. Qian,
“Binary neural network with 16 mb rram macro chip for classification
and online training,” in Electron Devices Meeting (IEDM), 2016 IEEE
International, pp. 16–2, IEEE, 2016.

[33] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, “Sparse
coding with memristor networks.,” Nature nanotechnology, 2017.

[34] M. Hu, C. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila,
H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan,
“Memristor-based analog computation and neural network classifica-
tion with a dot product engine,” Advanced Materials, 2018.

[35] CCIX Consortium, “CCIX interconnect.”
https://www.ccixconsortium.com, 2017.

[36] Gen-Z Consortium, “Gen-Z interconnect.”
http://genzconsortium.org/about/, 2016.

[37] B. Wile, “Coherent accelerator processor interface (CAPI) for
POWER8 systems,” tech. rep., IBM, September 2014.

[38] “CNTK: The Microsoft Cognitive Toolkit.” https://cntk.ai/.
[39] “Caffe2: Lightweight, Modular, and Scalable Deep Learning Frame-

work.” https://caffe2.ai/.

[40] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: a system for
large-scale machine learning.,” in OSDI, vol. 16, pp. 265–283, 2016.

[41] “ONNX: Open Neural Network Exchange Format.” https://onnx.ai.
[42] “NNEF: Neural Network Exchange Format.”

https://www.khronos.org/nnef.
[43] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-

cient inference: A whitepaper,” CoRR, vol. abs/1806.08342, 2018.
[44] M. Z. Alom, A. T. Moody, N. Maruyama, B. C. V. Essen, and

T. M. Taha, “Effective quantization approaches for recurrent neural
networks,” CoRR, vol. abs/1802.02615, 2018.

[45] Y. Xu, Y. Wang, A. Zhou, W. Lin, and H. Xiong, “Deep neural
network compression with single and multiple level quantization,”
CoRR, vol. abs/1803.03289, 2018.

[46] N. Mellempudi, A. Kundu, D. Das, D. Mudigere, and B. Kaul, “Mixed
low-precision deep learning inference using dynamic fixed point,”
CoRR, vol. abs/1701.08978, 2017.

[47] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quan-
tization of deep convolutional networks,” CoRR, vol. abs/1511.06393,
2015.

[48] P. Sanders and C. Schulz, “Think Locally, Act Globally: Highly
Balanced Graph Partitioning,” in Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13), vol. 7933 of LNCS,
pp. 164–175, Springer, 2013.

[49] T. K. N. W. Group, “Neural network exchange format.”
https://www.khronos.org/registry/NNEF/specs/1.0/nnef-1.0.pdf.

[50] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang, “Djinn and tonic: Dnn as a
service and its implications for future warehouse scale computers,” in
Proceedings of the 42Nd Annual International Symposium on Computer
Architecture, ISCA ’15, (New York, NY, USA), pp. 27–40, ACM, 2015.

[51] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, et al., “A
cloud-scale acceleration architecture,” in Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium on, pp. 1–13,
IEEE, 2016.

[52] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in Microarchitecture (MICRO), 2016 49th
Annual IEEE/ACM International Symposium on, pp. 1–13, IEEE, 2016.

[53] J. Clemons, C.-C. Cheng, I. Frosio, D. Johnson, and S. W. Keckler,
“A patch memory system for image processing and computer vision,”
in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM Interna-
tional Symposium on, pp. 1–13, IEEE, 2016.

[54] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA ’17, (New York, NY, USA), pp. 548–
560, ACM, 2017.

[55] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“Neutrams: Neural network transformation and co-design under neu-
romorphic hardware constraints,” in Microarchitecture (MICRO), 2016
49th Annual IEEE/ACM International Symposium on, pp. 1–13, IEEE,
2016.

[56] P. Bruel, S. R. Chalamalasetti, C. Dalton, I. El Hajj, A. Goldman,
C. Graves, W.-m. Hwu, P. Laplante, D. Milojicic, G. Ndu, et al.,
“Generalize or die: Operating systems support for memristor-based ac-
celerators,” in Rebooting Computing (ICRC), 2017 IEEE International
Conference on, pp. 1–8, IEEE, 2017.

[57] P. Laplante and D. Milojicic, “Rethinking operating systems for re-
booted computing,” in 2016 IEEE International Conference on Re-
booting Computing (ICRC), pp. 1–8, IEEE, 2016.

[58] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, “A massively parallel coprocessor for convo-
lutional neural networks,” in Application-specific Systems, Architectures
and Processors, 2009. ASAP 2009. 20th IEEE International Conference
on, pp. 53–60, IEEE, 2009.

[59] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynam-
ically configurable coprocessor for convolutional neural networks,” in
Proceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, (New York, NY, USA), pp. 247–257, ACM,
2010.

[60] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240
g-ops/s mobile coprocessor for deep neural networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 682–687, 2014.

[61] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini, “Origami: A convolutional network accelerator,” in Proceed-
ings of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI
’15, (New York, NY, USA), pp. 199–204, ACM, 2015.

[62] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, “4.6 a1.
93tops/w scalable deep learning/inference processor with tetra-parallel
mimd architecture for big-data applications,” in Solid-State Circuits
Conference-(ISSCC), 2015 IEEE International, pp. 1–3, IEEE, 2015.

[63] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in Com-
puter Design (ICCD), 2013 IEEE 31st International Conference on,
pp. 13–19, IEEE, 2013.

[64] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in Proceedings of the 42Nd Annual International Symposium
on Computer Architecture, ISCA ’15, (New York, NY, USA), pp. 92–
104, ACM, 2015.

[65] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), pp. 1737–
1746, 2015.

[66] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, pp. 269–284, ACM, 2014.

[67] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’15, (New York, NY, USA),
pp. 161–170, ACM, 2015.

[68] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” arXiv preprint
arXiv:1703.09039, 2017.

[69] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
X. Zhou, and Y. Chen, “Pudiannao: A polyvalent machine learning
accelerator,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, (New York, NY, USA), pp. 369–381, ACM,
2015.

[70] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,”
in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM Interna-
tional Symposium on, pp. 1–12, IEEE, 2016.

[71] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha,
A. Jagannathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and A. Raghu-
nathan, “Scaledeep: A scalable compute architecture for learning
and evaluating deep networks,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA ’17, (New
York, NY, USA), pp. 13–26, ACM, 2017.

[72] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of fpga
based neural network accelerator,” arXiv preprint arXiv:1712.08934,
2017.

[73] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An fpga-
based processor for convolutional networks,” in Field Programmable
Logic and Applications, 2009. FPL 2009. International Conference on,
pp. 32–37, IEEE, 2009.

[74] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning: auto-
matic generation of fpga-based learning accelerators for the neural
network family,” in Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE, pp. 1–6, IEEE, 2016.

[75] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K.
Kim, and H. Esmaeilzadeh, “Tabla: A unified template-based frame-
work for accelerating statistical machine learning,” in High Perfor-
mance Computer Architecture (HPCA), 2016 IEEE International Sym-
posium on, pp. 14–26, IEEE, 2016.

[76] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to fpgas,” in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pp. 1–12, IEEE, 2016.

[77] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator
efficiency through resource partitioning,” in Proceedings of the 44th

Annual International Symposium on Computer Architecture, ISCA ’17,
(New York, NY, USA), pp. 535–547, ACM, 2017.

[78] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Microarchitec-
ture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on, pp. 1–12, IEEE, 2016.

[79] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An ar-
chitecture for ultra-low power binary-weight cnn acceleration,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2017.

[80] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: ineffectual-neuron-free deep neural network
computing,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on, pp. 1–13, IEEE, 2016.

[81] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Proceedings of the 43rd International Symposium on
Computer Architecture, pp. 243–254, IEEE Press, 2016.

[82] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, (New York, NY, USA), pp. 27–40, ACM, 2017.

[83] J. Chung and T. Shin, “Simplifying deep neural networks for neuro-
morphic architectures,” in Design Automation Conference (DAC), 2016
53nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2016.

[84] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov,
and A. Moshovos, “Bit-pragmatic deep neural network computing,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-50 ’17, (New York, NY, USA), pp. 382–
394, ACM, 2017.

[85] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian,
Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, and B. Yuan,
“Circnn: Accelerating and compressing deep neural networks using
block-circulant weight matrices,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-
50 ’17, (New York, NY, USA), pp. 395–408, ACM, 2017.

[86] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in Proceedings of the 53rd Annual Design Automation Conference,
p. 124, ACM, 2016.

[87] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and
B. Yuan, “Sc-dcnn: Highly-scalable deep convolutional neural network
using stochastic computing,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 405–418, ACM, 2017.

[88] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
cnn accelerators,” in Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on, pp. 1–12, IEEE, 2016.

[89] Y. Wang, H. Li, and X. Li, “Real-time meets approximate computing:
An elastic cnn inference accelerator with adaptive trade-off between
qos and qor,” in Proceedings of the 54th Annual Design Automation
Conference 2017, p. 33, ACM, 2017.

[90] Y. Ji, Y. Zhang, W. Chen, and Y. Xie, “Bridge the gap between
neural networks and neuromorphic hardware with a neural network
compiler,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’18, (New York, NY, USA), pp. 448–460, ACM,
2018.

[91] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’18, (New York, NY, USA), pp. 461–475, ACM,
2018.

[92] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” in Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on, pp. 380–392,
IEEE, 2016.

[93] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in Proceedings of the Twenty-Second International Conference on

Architectural Support for Programming Languages and Operating
Systems, pp. 751–764, ACM, 2017.

[94] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 288–301, ACM, 2017.

[95] Z. Wang, R. Schapire, and N. Verma, “Error-adaptive classifier boosting
(eacb): Exploiting data-driven training for highly fault-tolerant hard-
ware,” in Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, pp. 3884–3888, IEEE, 2014.

[96] J. Zhang, Z. Wang, and N. Verma, “A machine-learning classifier
implemented in a standard 6t sram array,” in VLSI Circuits (VLSI-
Circuits), 2016 IEEE Symposium on, pp. 1–2, IEEE, 2016.

[97] W. H. Wen-mei, I. El Hajj, S. G. de Gonzalo, C. Pearson, N. S. Kim,
D. Chen, J. Xiong, and Z. Sura, “Rebooting the data access hierarchy
of computing systems,” in Rebooting Computing (ICRC), 2017 IEEE
International Conference on, pp. 1–4, IEEE, 2017.

[98] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, (New York, NY, USA), pp. 91–104,
ACM, 2011.

[99] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “Nv-heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, (New
York, NY, USA), pp. 105–118, ACM, 2011.

[100] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” in Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, (New York, NY,
USA), pp. 433–452, ACM, 2014.

[101] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Makalu: Fast
recoverable allocation of non-volatile memory,” in Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 677–694,
ACM, 2016.

[102] I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Achermann,
P. Faraboschi, W.-m. Hwu, T. Roscoe, and K. Schwan, “Spacejmp:
Programming with multiple virtual address spaces,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 353–368, ACM,
2016.

[103] I. El Hajj, T. B. Jablin, D. Milojicic, and W.-m. Hwu, “Savi objects:
sharing and virtuality incorporated,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA, p. 45, 2017.

[104] G. Chen, L. Zhang, R. Budhiraja, X. Shen, and Y. Wu, “Efficient
support of position independence on non-volatile memory,” in Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 191–203, ACM, 2017.

[105] J. Tanguy, J. L. Bchennec, M. Briday, and O. H. Roux, “Reactive
embedded device driver synthesis using logical timed models,” in 2014
4th International Conference On Simulation And Modeling Methodolo-
gies, Technologies And Applications (SIMULTECH), pp. 163–169, Aug
2014.

[106] Y. Dong, Y. He, Y. Lu, and H. Ye, “A model driven approach for
device driver development,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C),
pp. 122–129, July 2017.

[107] S. Sydow, M. Nabelsee, A. Busse, S. Koch, and H. Parzyjegla,
“Performance-aware device driver architecture for signal processing,”
in 2016 28th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), pp. 67–75, Oct 2016.

[108] V. Vojdani, K. Apinis, V. Rtov, H. Seidl, V. Vene, and R. Vogler,
“Static race detection for device drivers: The goblint approach,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 391–402, Sept 2016.

[109] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast and precise
symbolic analysis of concurrency bugs in device drivers (t),” in 2015
30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 166–177, Nov 2015.

[110] A. Kadav and M. M. Swift, “Understanding modern device drivers,”
in Proceedings of the Seventeenth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,
ASPLOS XVII, (New York, NY, USA), pp. 87–98, ACM, 2012.

[111] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gtz, “Unmodified device driver
reuse and improved system dependability via virtual machines,” in In
Proceedings of the 6th conference on Symposium on Operating Systems
Design & Implementation, 2004.

[112] D. Eschweiler and V. Lindenstruth, “Test driven development for device
drivers and rapid hardware prototyping,” in 2015 IEEE Eighth Inter-
national Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 1–9, April 2015.

[113] Z. Hao, W. Endong, W. Yinfeng, Z. Xingjun, C. Baoke, W. Weiguo,
and D. Xiaoshe, “Transparent driver-kernel isolation with vmm inter-
vention,” in Proceedings of the First ACM SIGOPS Conference on
Timely Results in Operating Systems, TRIOS ’13, (New York, NY,
USA), pp. 2:1–2:16, ACM, 2013.

[114] Y. Sun and T. c. Chiueh, “Side: Isolated and efficient execution of un-
modified device drivers,” in 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 1–12,
June 2013.

[115] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, “Using the
simos machine simulator to study complex computer systems,” ACM
Trans. Model. Comput. Simul., vol. 7, pp. 78–103, Jan. 1997.

[116] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“Cotson: Infrastructure for full system simulation,” SIGOPS Oper. Syst.
Rev., vol. 43, pp. 52–61, Jan. 2009.

[117] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Annual
Technical Conference, Freenix Track, pp. 41–46, USENIX, April 2005.

