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Abstract
With heterogeneous computing on the rise, executing pro-
grams efficiently on different devices from a single source
code has become increasingly important. OpenCL, having a
bulk-synchronous programming model, has been proposed
as a framework for writing such performance-portable pro-
grams. Execution order of work-items in a program is un-
constrained except at barrier synchronization events, giving
some freedom to an implementation when scheduling work-
items between synchronization points.

Many OpenCL (and CUDA) compilers have been de-
signed for targeting multicore CPU architectures. However,
scheduling work-items in prior work has been done with
primary focus on correctness and vectorization. To the best
of our knowledge, no existing implementations consider the
impact of work-item scheduling on data locality.

We propose an OpenCL compiler that performs data-
locality-centric work-item scheduling. By analyzing the
memory addresses accessed in loops within a kernel, our
technique can make better decisions on how to schedule
work-items to construct better memory access patterns,
thereby improving performance. Our approach achieves ge-
omean speedups of 3.32× over AMD’s and 1.71× over In-
tel’s implementations on Parboil and Rodinia benchmarks.
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1. Introduction
Modern computing systems are transitioning to heteroge-
neous platforms equipped with both CPUs and accelerators
(such as GPUs or Xeon Phis). Each type of device comes
with different characteristics that require significant tuning
efforts for applications to run on the device efficiently. One
fundamental challenge with targeting heterogeneous plat-
forms is maintaining multiple source code versions opti-
mized for different platforms. Ideally, programmers should
write their code using a single programming model, and the
compiler would handle transforming the program to run op-
timally on the target architecture.

OpenCL [21] provides a unified interface for diverse de-
vice architectures. The abstract computing model of OpenCL
is intended to be architecture neutral, enabling functional
equivalence across architectures. The bulk-synchronous pro-
gramming model assumes an abstract device architecture

composed of multiple compute units, each consisting of
multiple processing elements. The program is organized into
multiple work-items which are grouped into work-groups.
Work-items within a work-group execute on a single com-
pute unit and can synchronize and share memory. Work-
groups execute independently on different compute units
and do not synchronize with each other. It is largely the ven-
dor’s responsibility to map the abstract computing model to
the physical execution entities.

Many previous works have proposed compilation tech-
niques for OpenCL kernels to CPUs [13, 15, 18, 23, 33,
36, 37]. All these works schedule work-groups by executing
them in distinct parallel CPU threads. This scheduling ap-
proach is most intuitive because no barrier synchronization
takes place between work-groups which makes them ideal
units of SPMD parallelism on the CPU.

Since work-items within a work-group can synchronize
with each other, they are executed within the same CPU
thread to avoid the high synchronization overhead that ex-
ists across CPU threads. A kernel is typically divided into
bulk-synchronous code regions by synchronization barriers.
Scheduling work-items to execute a code region is done by
wrapping a region with a work-item loop [15, 18, 23, 33, 36]
or via user-level threads [13]. Some works strip-mine the
work-item loop to benefit from the CPU’s SIMD execution
units. Strip-mining is done either by using explicit vector
instructions [18, 33] or by annotating the loops for a later
compilation phase [15].

Scheduling work-items by wrapping entire code regions
with work-item loops captures program correctness and opti-
mizes for instruction throughput in the case of strip-mining.
However, existing approaches do not consider the impact of
such scheduling on data locality.

In this work, we propose a code analysis and work-item
scheduling technique that is locality-centric. By analyz-
ing the memory addresses accessed in loops in a kernel,
our technique can make better decisions on how to stat-
ically schedule work-items to construct better memory ac-
cess patterns, thereby improving performance. The proposed
scheduling technique can also be used in conjunction with
vectorization to achieve higher performance than scheduling
for vectorization alone.

In this paper, we make the following contributions:
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• We show that existing work-item scheduling techniques
in the literature achieve suboptimal locality results be-
cause they do not consider the impact of work-item
scheduling on the memory access pattern.

• We propose a method based on a robust compiler analysis
of memory accesses to statically select a better work-item
schedule in the presence of loops.

• We implement our technique in a real OpenCL compiler
and evaluate it on 18 benchmarks from the Parboil [38]
and Rodinia [5] benchmarks suites.

• We demonstrate that our technique selects a better sched-
ule for all benchmarks, for improved cache and TLB per-
formance. Overall, we show that locality-centric schedul-
ing achieves geometric mean speedups of 3.32× over
AMD’s and 1.71× over Intel’s OpenCL implementations
based on real hardware measurements.

The rest of this paper is organized as follows. Section 2
discusses existing OpenCL and CUDA compilers for CPUs,
highlighting the common trends and the distinguishing fea-
tures of each. Section 3 provides the motivation for our work
and details our proposed approach and its implementation.
Section 4 evaluates the impact of our approach on data lo-
cality and performance, benchmarking it against existing
OpenCL compilers from the industry. Finally, Section 5 out-
lines the related work and Section 6 concludes.

2. Background and Existing Approaches
OpenCL (and CUDA) compilers for CPUs have been pro-
posed in both academia and industry, such as MCUDA [36,
37], SnuCL [23], pocl [15], Karrenberg’s [18], AMD’s Twin
Peaks [13], and Intel’s OpenCL compiler [33]. These com-
pilers use different approaches to handle work-groups, work-
items, and synchronization to execute OpenCL kernels on
CPUs correctly and efficiently.

The OpenCL programming model is a bulk-synchronous
model where multiple work-items execute the same set of
kernel instructions on different sets of data. The work-items
are divided into work-groups such that work-items within a
work-group can synchronize using barrier instructions while
work-items in different work-groups cannot. Figure 1 is a de-
pendence graph that shows the immediate dependencies be-
tween dynamic instructions in OpenCL kernels. The graph
is conservative because the arrows indicate all dependencies
that may exist between instructions for some program. The
absence of an arrow between instructions indicates indepen-
dence that is guaranteed by the programming model.

One observation is that work-groups are completely inde-
pendent because there is no path connecting work-items in
different work-groups. This property allows all work-groups
to run concurrently, independently, and in any order. All ex-
isting works handle work-groups by scheduling them in dis-
tinct CPU threads. Thus, CPU threads do not need to syn-
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Figure 1: Immediate dependencies between dynamic in-
structions or instruction blocks (i) in OpenCL kernels. Each
work-group (wg) contains local size (LS) work-items (wi).
Work-items in different work-groups execute independently
until completion. Work-items in the same work group syn-
chronize at barriers. Barriers divide the program into code
regions within which work-items execute independently.
Work-item independence within regions provides great flex-
ibility for work-item scheduling.

chronize until kernel completion, which is convenient be-
cause synchronization across threads on a CPU is expensive.

Another observation is that dependencies between work-
items within a work-group are only introduced by barrier
instructions. Therefore barriers divide the kernel into regions
such that work-items within a region execute independently.
Existing approaches employ a region formation algorithm
to divide up the kernel into barrier-separated regions. The
remaining problem to be tackled is the scheduling of work-
items within a region.

AMD’s Twin Peaks [13] schedules work-items with user-
level threads which has the advantage of moving work-item
scheduling into the runtime instead of relying on com-
piler techniques. The remaining approaches [15, 18, 23,
33, 36, 37] perform the scheduling at compile time via
compiler-generated work-item loops: the compiler inserts
loops around each region that iterate over all work-items in
a work-group.

The advantage of using work-item loops as opposed to
user-level threads is that it enables compiler optimizations,
which are important for performance. One such optimiza-
tion is selective replication [36]. In the presence of barri-
ers, OpenCL variables need to be replicated for each work-
item so that all work-items could run concurrently. How-



ever, replication is unnecessary for uniform variables (vari-
ables having the same value for all work-items) and vari-
ables whose lifetime is confined to a region. With work-item
loops, replication is done via scalar expansion of variables
into arrays. It can therefore be selectively avoided by keep-
ing candidate variables scalar. With user-level threads, the
work-item context is replicated as a whole, and therefore
cannot be selectively avoided for individual variables.

Another important optimization is strip-mining of work-
item loops to benefit from SIMD vectorization for maximiz-
ing instruction throughput. One approach [15] does so by
annotating the work-item loops using LLVM parallel loop
annotations. Other approaches [18, 33] do so explicitly us-
ing vector instructions. Situations where control divergence
arises could be handled via dynamic convergence check-
ing [40] and/or control-flow to data-flow conversion [29].

Scheduling of work-items within a region can have a large
impact on data locality because it directly impacts the or-
der of memory accesses. On GPUs, scheduling is dictated
by the hardware. The GPU notion of warps (or wavefronts)
enforces that a sub-group of work-items in a work-group
will execute the same instruction before moving on to the
next. Moreover, the warp scheduler controls the execution
of work-items across warps. Since the programmer has little
control over instruction scheduling, it becomes incumbent
on the programmer to adapt their code and data structures
to the anticipated hardware scheduling policy for better data
locality. Such adaptations are the subject of many GPU op-
timizations such as data layout transformation, memory co-
alescing, and dynamic tiling [4, 39, 41].

On the other hand, the CPU hardware is not actively in-
volved with the scheduling of work-item instructions within
a region, leaving instruction scheduling up to the compiler
and runtime. This allows the compiler to adapt its scheduling
to the code to achieve the best memory access pattern, allevi-
ating the programmer’s burden to optimize for data locality.
Prior approaches only consider correctness and instruction
throughput when scheduling work-item instructions. Ours
is the first approach to consider the impact of work-item
scheduling on data locality.

3. Proposed Approach
Traditional work-item scheduling is not always good for lo-
cality. An alternative schedule is suggested which performs
better for applications having particular classes of memory
accesses. A selection algorithm is proposed that picks the
schedule likely to result in better locality based on a static
analysis of the memory access patterns. Finally, the imple-
mentation details of the alternative schedule and the selec-
tion mechanism are discussed.

3.1 A Motivating Example
The example in Figure 2 demonstrates the effect of work-
item scheduling on locality. Figure 2(b) depicts the depen-

wid = get_local_id(0); 
for(k=0; k < N; ++k){ 
  foo(arr[k][wid]); 
} 

wi0 wi1 wiLS-2 

foo(arr[0][wid]) 

foo(arr[N-1][wid]) 

wi2 wi3 wiLS-1 

foo(arr[1][wid]) 

(a) Simple example of OpenCL code region 

(b) Region dependence graph 

(c) Depth-first order (DFO) traversal using traditional work-
item loops results in large strided accesses 

wi0 wi1 wiLS-2 

foo(arr[0][wid]) 

foo(arr[N-1][wid]) 

wi2 wi3 wiLS-1 

foo(arr[1][wid]) 

wi0 wi1 wiLS-2 

foo(arr[0][wid]) 

foo(arr[N-1][wid]) 

wi2 wi3 wiLS-1 

foo(arr[1][wid]) 

(d) Breadth-first order (BFO) traversal having a better 
memory access pattern 

Figure 2: A motivating example demonstrating the impact of
scheduling on the memory access pattern.

dence graph of the code in Figure 2(a), where each white cir-
cle represents a dynamic instruction block from a single loop
iteration. If the traditional work-item scheduling is used to
execute this region, each work-item will execute the region
to completion before the next work-item begins, as shown in
Figure 2(c). Such a traversal is clearly suboptimal because it
results in a sequence of memory loads having a large stride.
A better traversal of loads can be achieved by scheduling the
work-items as shown in Figure 2(d). Such a traversal results
in the largest number of unit stride accesses.

The technique presented in this paper focuses on regions
containing loops because loops are the source of the longest
running regions having working sets large enough such that
locality is a major concern. Among the 30 Parboil and Ro-
dinia benchmarks, 18 of them have loops within kernel re-
gions. These 18 benchmarks will be used to evaluate our ap-
proach. The main question is whether to schedule a work-
item to execute an entire region before the next work-item
begins (the approach taken by existing compilers), or to
schedule all work-items to execute the same loop iteration
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Table 1: Classification of memory accesses and scheduling
decision preferred by each class (if any).

before moving on to the next (the alternative approach shown
in Figure 2(d)). These two scheduling techniques are de-
noted as depth first order (DFO) and breadth first order
(BFO) respectively, based on how they traverse the depen-
dence graph.

There is no single approach that fits all. Section 4 shows
that out of 18 benchmarks, DFO does better for 5 while
BFO does better for 13. DFO is well suited for capturing
locality among the memory accesses within each work-item,
whereas BFO will expose collective memory locality across
work-items. The better schedule depends on the memory
accesses dominating the loop body.

3.2 Selecting a Schedule
3.2.1 Classifying Memory Accesses
Locality-centric (LC) scheduling selects between DFO and
BFO based on which technique is predicted to have better
locality. The first step is to classify the memory operations
inside the loop at compile time. The classification we use is
summarized in Table 1. This classification is based on two
dimensions: loop iteration stride and work-item stride. For
each of these dimensions, memory accesses are classified as
stride zero, stride one, or other.

Stride zero (i.e., invariant) means that the memory access
index is the same for all loop iterations or all work-items in a
work-group respectively. Stride one means that the memory
access index increases by one for consecutive loop iterations
or consecutive work-items respectively. Other means that
the memory access index is neither invariant nor stride one.
Throughout this paper, these access types are abbreviated as
shown in Table 1 where ‘W’ means work-item, ‘L’ means
loop iteration, ‘0’ means stride zero, ‘1’ means stride one,
and ‘X’ means other.

A class of memory operations favors the schedule result-
ing in a smaller memory access stride. If a memory access
had a smaller stride with respect to the loop index, then it
is best traversed when a work-item runs deeply to finish ex-
ecuting a loop before the next work-item begins. Therefore
the memory access prefers DFO. If a memory access had
a smaller stride with respect to the work-item id, then it is
best traversed when a loop iteration executes broadly across
work-items before the next iteration begins. Therefore the
memory access prefers BFO. Illustrations of how reuse is
maximized this way are shown in Table 2.

This paper focuses on stride-zero (invariant) and stride-
one memory accesses because these are most common in
practice and sufficient for the proof of concept. However,
the same approach can be generalized to any non-unit stride
value which is left for future work. To classify the mem-
ory accesses, multiple analyses are needed such as loop-
invariance analysis, loop index analysis, work-item unifor-
mity analysis, and stride analysis. These analyses are indi-
vidually solved problems in the literature [8, 14]. However,
the stride analysis is augmented for more flexible classifica-
tion.

3.2.2 Approximate Stride Analysis
A precise stride analysis is not necessary for making schedul-
ing decisions because the stride information is used to in-
form an optimization decision that does not impact correct-
ness. For this reason, an approximate stride analysis is used
to more aggressively classify the stride. The approximate
stride analysis differs from the precise stride analysis in the
treatment of three operators:

• Modulus: In the statement a = b%N where b is stride
one and N is arbitrary, a precise stride analysis labels a
as unknown. However, a in practice is stride one for the
most part. Thus, the result of a modulus on a stride one
variable is approximated as stride one.

• Division: In the statement a = b/N where b is stride one
and N is arbitrary, the value of a in consecutive threads
differs by either 0 or 1. Used as an array index, a will
result in a memory pattern that is at least as good as a
stride one pattern. For this reason, a can be approximated
as stride one.

• Select/Phi functions: In the statement a = (b > 0)?b : 0
where b is stride one, the precise stride of a is unknown.
However, the footprint created by a as an index is compa-
rable to that of the worse of the two select/phi parameters
(in this case, b). The decision is modeled as a semilat-
tice (stride-zero→ stride-one→ unknown) such that the
return value of a select or phi operator is classified ac-
cording to the meet of its operands’ classifications.

These three operators are quite common in OpenCL code
when doing index calculations and boundary conditions,
which renders the approximate stride analysis quite useful.

3.2.3 Deciding on a Schedule
Once the classification of each memory access is performed,
the number of memory accesses favoring each schedule is
tallied, and the schedule with a greater number of tallies is
chosen. In the case of a tie, DFO is selected being the cur-
rent state-of-the-art, and also to avoid the overhead of per-
forming BFO, particularly in divergent contexts (discussed
in Section 3.4).

The decision for the preferred schedule is made on a
per-loop basis. Therefore, different loops in the same re-
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Example 

DFO Memory 
Access Pattern 

DFO vs. BFO 
BFO Memory  
Access Pattern 

W0L1 
for(k=0; k<N; ++k) 
  foo(arr[k]); 

BFO: better 
temporal locality 

W0LX 
for(k=0; k<N; ++k) 
  foo(arr[f(k)]); 

BFO: better  
temporal locality 

W1L0 
for(k=0; k<N; ++k) 
  foo(arr[wid]); 

DFO: better 
temporal locality 

W1LX 
for(k=0; k<N; ++k) 
  foo(arr[f(k)+wid]); 

BFO: better 
spatial locality 

WXL0 
for(k=0; k<N; ++k) 
  foo(arr[f(wid)]); 

DFO: better 
temporal locality 

WXL1 
for(k=0; k<N; ++k) 
  foo(arr[f(wid)+k]); 

DFO: better 
spatial locality 
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Table 2: Comparison of scheduling policies for non-neutral memory access classes. In the access pattern illustrations, shaded
boxes represent a memory locations and the arrow represents the access order. A loop inside a box means the location is
accessed repetitively. A loop spanning multiple boxes means that the consecutive locations are accessed sequentially then the
same sequence is repeated. LS is the local size of the work-group and N is the number of loop iterations.

gion could receive different schedules. Moreover, in the
case where decisions in loop nests cannot be simultaneously
granted, priority is given to the inner loops. Therefore, in the
case where a DFO loop contains a BFO loop, the outer DFO
loop will be scheduled with BFO to enable the inner BFO
loop to be scheduled correctly. The algorithm for performing
this scheduling is discussed in the next section.

3.3 Implementing the Schedule
Our compiler is implemented as an AST-based transforma-
tion from OpenCL code to regular C code. The C code
can then be passed to a vendor or third-party C compiler
to be compiled for the underlying CPU architecture. Fig-
ure 3 shows an example of how a simple region containing a
convergent loop is transformed. The OpenCL kernel in Fig-
ure 3(a) can be scheduled with DFO or BFO as shown in
Figures 3(b) and 3(c) respectively. DFO scheduling is im-
plemented by simply wrapping the entire code region with a
work-item loop which is equivalent to what existing works
[15, 23, 36] do. BFO scheduling is more complicated be-
cause it needs to divide the region into subregions and wrap
each subregion with a work-item loop separately.

The pseudocode for subregion formation is shown in Sub-
routines 1 to 4. The process starts in Subroutine 1, and is
divided into two phases: (1) marking subregion boundaries
within a region, and (2) creating subregions between those
boundaries. Subroutine 2 marks the boundary statements in a
compound statement individually. The compound statement
is marked as containing a boundary if one of its statements
is marked as a boundary. Individual statements are marked

i = get_local_id(0); 
if(foo()) { 
  bar(i); 
  while(baz()) { 
    qux(i); 
  } 
} 

(a) OpenCL simple code region 
with non-divergent loop 

for(wid = 0 to LS-1) { 
  i = wid; 
  if(foo()) { 
    bar(i); 
    while(baz()){ 
      qux(i); 
    } 
  } 

} 
(b) DFO scheduling 

for(wid = 0 to LS-1) { 
  i[wid] = wid; 

} 
if(foo()) { 

  for(wid = 0 to LS-1) { 
    bar(i[wid]); 

  }   
  while(baz()){ 

    for(wid = 0 to LS-1) { 
      qux(i[wid]); 

    } 
  } 
} 

(c) BFO scheduling 

Figure 3: Example of scheduling a non-divergent loop nested
in a non-divergent if-statement. Here, foo and baz are work-
item independent.

as boundaries in Subroutine 3. A loop is marked as a bound-
ary if it were selected for BFO scheduling, or if its body
contains a boundary. An if-statement is marked as a bound-
ary if either its then- or else-statements contain a boundary.
Uniform statements are also marked as boundaries, but we
omitted this detail and its associated discussion for simplic-
ity and brevity. All other statements cannot be boundaries.

After subregion boundaries are marked, Subroutine 4
constructs the subregions between the boundaries. It starts
with an empty subregion and iterates through every state-



Subroutine 1  subRegionFormation(Region) 

 SubRegionList = { } 
 markBoundaries(Region) 
 createSubRegions(Region, SubRegionList) 
 return SubRegionList 

Subroutine 2  markBoundaries(CompundStmt) 

 CompundStmt.containsBoundary = false 
 for every statement S in CompoundStmt do 
     markStmtIfBoundary(S) 
     CompundStmt. containsBoundary |= S.isBoundary 

Subroutine 3  markStmtIfBoundary(S) 

 switch typeof S: 
     case LOOP: 
         markBoundaries(S.body) 
         S.isBoundary = S.isBFOLoop ˅ S.body.containsBoundary 
     case IF: 
         markBoundaries(S.then)   ;   markBoundaries(S.else) 
         S.isBoundary = S.then.containsBoundary  
                                       ˅   S.else.containsBoundary 
     default: 
         S.isBoundary = false 

Subroutine 4  createSubRegions(CompoundStmt, SubRegionList) 

 SubRegion = { } 
 for every statement S in CompoundStmt do 
     if (not S.isBoundary) then 
         SubRegion.add(S) 
     else // if a boundary is reached 
         SubRegionList.add(SubRegion) 
         switch typeof S: 
             case IF: 
                 createSubRegions(S.then, SubRegionList) 
                 createSubRegions(S.else, SubRegionList) 
             case LOOP: 
                 createSubRegions(S.body, SubRegionList) 
         SubRegion = { } 
 SubRegionList.add(SubRegion) 

ment, adding it to the subregion until a boundary is reached.
Once a boundary is reached, the subregion is completed
and added to the list. The boundary is handled by process-
ing its body recursively depending on whether it is an if-
statement or loop. The subregion finally resumes after the
region boundary is processed and continues creating subre-
gions in the same manner until the end is reached.

Consider the example in Figure 3(a) where the while loop
is selected for BFO scheduling. In this case, the subregion
formation algorithm must transform the code to that shown
in Figure 3(c). In the first phase, Subroutines 2 and 3 iterate
through the statements to mark subregion boundaries. The
while loop is marked as a boundary because it is a BFO
loop. The if-statement is marked as a boundary because its

then-statement contains a boundary (namely, the loop). In
the second phase, Subroutine 4 is invoked on the region. The
initialization of i is made into a subregion bounded by the
if-statement (which was marked as a boundary). The sub-
region formation is then recursively invoked on the then-
statement. Inside the then-statement, bar is made into a sub-
region bounded by the loops (which was marked as a bound-
ary). The subregion formation is then recursively invoked on
the loop body. Inside the loop body, qux is made into a sub-
region terminated by the end of the loop. Finally, each sub-
region is wrapped with a work-item loop and non-uniform
variables such as i are expanded.

One could interpret BFO scheduling as selectively intro-
ducing barrier synchronizations inside loops to force work-
items to synchronize after every iteration so that they do
not get ahead of each other in accessing memory. This is
analogous to the dynamic tiling optimization [4] on GPUs
where the programmer introduces synchronizations inside
loops which are not necessary for correctness but enhance
performance by preventing work-items from getting too far
ahead of each other, thereby improving temporal and spatial
locality.

Another way one could interpret BFO scheduling is tak-
ing the traditional DFO-scheduled code and optimizing it
with a series of scalar expansions, loop distributions, and
loop interchanges. However, there are multiple reasons why
it is not always feasible to pass DFO-scheduled code to an-
other compiler for automatic transformation into BFO code.
First, a traditional compiler attempting to perform such an
optimization would have to first conservatively prove that
the loops are interchangeable. However, it cannot always
be determined that there are no loop-carried dependencies
across work-item loop iterations, especially when indirect
references obfuscate the loop-dependence analysis. On the
other hand, a compiler with direct access to the OpenCL
kernel has that guarantee from the programming model, so
it can make stronger assumptions without complicated loop-
dependence analyses. Second, the presence of control diver-
gence makes a simple loop interchange infeasible and re-
quires much more complex transformations. For these rea-
sons, BFO scheduling can much more effectively be per-
formed when work-item loops are inserted, rather than being
outsourced to loop-manipulating optimization passes by an
underlying compiler.

3.4 Handling Control Divergence
Control divergence arises when not all work-items take the
same execution path. In a schedule which only uses DFO,
this is not an issue. Region boundaries are by definition
points of synchronization in the program. Since all work-
items must be active at synchronization points, it is safe to
assume that work-items are always convergent at the entry
and exit points of a region. For this reason, a loop over all
work-items can be inserted around the entire region without
any concern about some work-items not being active.



for(wid = 0 to LS-1) { 
  i = wid; 
  if(foo(i)) { 
    bar(i); 
    while(baz()) { 
      qux(i); 
    } 
  } 

} 

for(wid = 0 to LS-1) { 
  i[wid] = wid; 

  pred[wid] = foo(i[wid]); 
  numActive += pred[wid]; 
} 
if(numActive > 0) { 
  for(wid = 0 to LS-1) { 
    if(pred[wid]) { 
      bar(i[wid]); 

    } 
  } 
  while(baz()) { 

    for(wid = 0 to LS-1) { 
      if(pred[wid]) {   
        qux(i[wid]); 

      } 
    } 
  } 

} 

i = get_local_id(0); 
if(foo(i)) { 
  bar(i); 
  while(baz()) { 
    qux(i); 
  } 
} 

(a) OpenCL simple code region 
with loop in divergent conditional 

(b) DFO scheduling (c) BFO scheduling 

Figure 4: Example of scheduling a non-divergent loop in a
divergent context using predicated work-item loops.

On the other hand, not all work-items are guaranteed to
be active at the entry and exit points of a subregion because
a subregion could be within the body of a divergent condi-
tional or loop. Therefore, wrapping subregions with a work-
item loop is not sufficient for BFO scheduling. Instead, con-
trol divergence is handled by introducing a predicate array
that tracks which work-items are active. Before the subre-
gion is executed for a particular work-item, the predicate ar-
ray must be checked for whether the work item is active. The
combination of the work-item loop with the predicate check
is denoted as a predicated work-item loop.

Control divergence can be introduced whenever there is
work-item dependent control flow due to conditionals or
loops. Figure 4(a) illustrates the case where a loop is guarded
with a divergent conditional. DFO scheduling is done by
simply wrapping the entire region with a work-item loop as
shown in Figure 4(b). However, to perform BFO scheduling,
the condition evaluation must be stored and used for exe-
cuting the subregions inside the conditional via predicated
work-item loops as shown in Figure 4(c).

Figure 5(a) illustrates the case where the loop itself is
divergent because the loop condition is dependent on the
work-item id. The DFO code still follows the same strategy
as shown in Figure 5(b). The BFO code is as shown in
Figure 5(c). In addition to storing a predicate array and
using predicated work-item loops to wrap subregions, the
total number of active work-items is also maintained at all
iterations to know when the loop must terminate.

Predicated work-item loops are difficult to vectorize be-
cause of the loop-dependent conditional surrounding the
body of the loop. For this reason, our tool statically gen-
erates two versions of the code and selects between them
dynamically based on a runtime divergence check. The first
version uses a regular strip-mined work-item loop that is

numActive = 0; 
for(wid = 0 to LS-1) { 
  i[wid] = wid; 

  pred[wid] = foo(i[wid]); 
  numActive += pred[wid]; 
} 
while(numActive > 0) { 
  numActive = 0; 
  for(wid = 0 to LS-1) { 
    if(pred[wid]) { 
      bar(i[wid]); 

      pred[wid] =  
        foo(i[wid]); 

      numActive += pred[wid]; 
    } 
  } 
} 

i = get_local_id(0); 
while(foo(i)) { 
  bar(i); 

} 
(a) OpenCL simple code 

region with divergent loop 

for(wid = 0 to LS-1) { 
  i = wid; 
  while(foo(i)) { 
    bar(i); 

  } 
} 

(b) DFO scheduling 

(c) BFO scheduling 

Figure 5: Example of scheduling a divergent loop.

for(wid = 0 to LS-1) { 
  if(pred[wid]) { 
    ... 
  } 
} 

(a) Predicated work-item loop 

if(numActive == LS) { 
  strip-mined work-item loop 
} else { 
  predicated work-item loop 
} 

(b) Vectorization of predicated 
work-item loop 

Figure 6: Vectorization based on runtime convergence
checking.

selected when all work-items in the work-group are active.
The second version is a serial predicated work-item loop
that we fall back on when not all work-items are active. The
resulting code is shown in Figure 6. A similar technique is
employed in [11, 20, 22, 40]. In some cases, vectorization
can be improved using control flow to data flow conversion
techniques such as those employed in [18] and [33]. How-
ever, vectorization is not the main focus of this paper.

4. Evaluation
The performance of the proposed compiler with locality-
centric scheduling is evaluated in this section. We show that
locality-centric scheduling is able to consistently select the
schedule having fewer data cache misses. We also com-
pare our implementation with other OpenCL implementa-
tions from the industry to demonstrate the overall perfor-
mance of our technique.

4.1 Experimental Setup
The proposed compilation approach is implemented as an
extension of the Clang compiler framework. An AST-level
source-to-source translator takes OpenCL code and emits C
code. Vectorization is performed by annotating loops with
SIMD pragmas. The final machine binary is assembled using
the Intel C Compiler (ICC) of version 14.0.1. The same
compiler is used for building all benchmarks.
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Figure 7: Locality comparison of DFO, BFO, and locality-centric (LC) scheduling. Results are normalized to the worst
performing schedule. LC has geomean reduction in L1 data cache misses of 5.72× and 1.29× over DFO and BFO respectively.
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Figure 8: Locality comparison of AMD, Intel, and LC compilation approaches. Results are normalized to the worst performing
tool. LC has geomean reduction in L1 data cache misses of 9.81× and 3.35× over AMD and Intel respectively.

The evaluation platform consists of an Intel i7-3820 pro-
cessor running at 3.6GHz, having 4 cores with hyperthread-
ing enabled. The memory hierarchy includes 32KB L1 pri-
vate data caches, 10MB shared last-level cache, and 16GB of
DDR3 DRAM with dual channel configuration. The system
is running 64-bit Debian Jessie distribution. A PMU-based
performance monitoring library, perfmon2 [12], is used for
collecting performance counters throughout.

The industry implementations we compare against are
AMD’s [13] and Intel’s [33] OpenCL compilers. The driver
versions used are 1445.5 and 1.2.0.8 respectively, which are
the latest versions at the time this paper was submitted.

Throughout the experiments section, data is normalized
against the approach scoring highest for the metric under
study as opposed to a common baseline. The reason for
doing so is that if a single baseline is taken, the values
for locality and speedup could span three to four orders
of magnitude (0.01× to 10×) which is difficult to plot on
a single axis. This normalization methodology seemed to
make the graph more readable and make better use of the
space than log plots.

4.2 Benchmarks
Eighteen benchmarks from the Parboil [38] and Rodinia [5]
benchmark suites were selected for evaluation. The bench-
marks selected are those having loops which are completely
contained within a code region such that our technique is
applicable. The remaining benchmarks are not relevant be-
cause they either do not contain loops within regions, or the

Benchmark Abbreviation 
cutcp ctcp 

heartwall hw 
histo hst 

kmeans kmns 
lavaMD lmd 

leukocyte lkct 
lud lud 

mri-gridding mrig 
mri-q mriq 

Benchmark Abbreviation 
nw nw 

parboil’s bfs pbfs 
particlefilter pf 
rodinia’s bfs rbfs 

sad sad 
sgemm sgm 
spmv spmv 

streamcluster sc 
tpacf tpcf 

Table 3: Evaluated benchmarks from Parboil and Rodinia
benchmark suites with abbreviations used.
loops have short constant trip counts such that they disappear
after unrolling.

Table 3 lists the benchmarks evaluated and the abbrevia-
tions used throughout this section for each. Each benchmark
is executed ten times for evaluation of the average execu-
tion time and associated performance counters. Three bench-
marks (histo, leukocyte, and mri-gridding) have device func-
tions in the dominant loops. These functions are manually
inlined to focus the comparison with AMD and Intel on lo-
cality, since their compilers seem to inline device functions
while our framework does not currently support that.

4.3 Impact of Scheduling on Locality
Figure 7 compares the number of L1 data cache misses
(lower is better) of DFO, BFO, and LC scheduling. The val-
ues for each benchmark are normalized to the policy having
the highest (worst) number of misses. The benchmarks are
categorized according to the schedule (DFO or BFO) having
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Figure 9: Performance comparison with AMD and Intel. Results are normalized to the faster tool. LC achieves a geomean
speedup of 3.32× and 1.71× over AMD and Intel respectively.

better performance and sorted in increasing order of LC’s
relative performance.

The graph shows that 13 benchmarks have better locality
with BFO scheduling and 5 are better with DFO. Moreover,
it shows that LC scheduling consistently selects the correct
schedule, achieving geomean reductions in L1 data cache
misses of 5.72× and 1.29× over DFO and BFO respectively.

The conclusions drawn from this experiment are:

• Current state-of-the-art work-item scheduling techniques
(i.e., DFO) yields suboptimal data locality behavior.

• A single scheduling technique (whether DFO or BFO)
will not always result in the best locality, thereby neces-
sitating that scheduling be locality-aware.

• Our locality-centric scheduling is successful at choosing
the schedule resulting in better locality.

4.4 Locality Comparison with Industry
Implementations

Figure 8 compares the number of L1 data cache misses
(lower is better) of AMD, Intel, and LC. The values for each
benchmark are normalized to the approach having the high-
est (worst) number of misses. The benchmarks are sorted in
increasing order of LC’s relative performance.

The graph shows that our locality-centric scheduling
achieves locality results which are consistently better or as
good as that of AMD’s and Intel’s implementations. The
missing hw datapoint for Intel is because Intel’s compiler
crashed when compiling this benchmark. LC scheduling was
able to achieve geomean reductions in L1 data cache misses
of 9.81× over AMD and 3.35× over Intel.

The conclusions drawn from this experiment are:

• Industry implementations of current state-of-the-art work-
item scheduling yield suboptimal data locality behavior.

• Our locality-centric scheduling achieves better data lo-
cality on average than current industry implementations.

On a side note, we observe that AMD’s locality results
are significantly worse than Intel’s and LC’s, even for cases
where DFO is better for locality (pf is a clear example of this
behavior). This is due to the overhead of replicating variables
for all work-items even when variables are uniform. This

fundamental limitation in AMD’s user-level threads tech-
nique has already been discussed in Section 2. Another note
is that when LC selects DFO, it performs slightly better than
Intel in many cases (again, pf is a clear example). That is
because the schedule Intel uses is not a pure DFO (as will be
mentioned in Section 5). Intel uses narrow vectors of work-
items to execute a region which can be seen as a hybrid be-
tween DFO and BFO skewed much towards DFO.

4.5 Performance Comparison with Industry
Implementations

Figure 9 compares the relative performance (inverse of time,
higher is better) of AMD, Intel, and LC. Since AMD does
not seem to vectorize across work-items while Intel does,
we include performance results for a vectorized and non-
vectorized version of LC to isolate the impact of locality for
fair comparison with both. The values for each benchmark
are normalized to the best performing tool. The benchmarks
are sorted in alphabetical order.

The graph shows that our OpenCL implementation for
CPUs with locality-centric scheduling achieves significant
speedups over AMD and Intel. LC outperforms AMD in
most benchmarks with a geomean speedup of 3.32×. Non-
vectorized LC still outperforms AMD with geomean speedup
2.01×, despite the fact that it only achieves geomean 0.80×
the number of instructions. This result further confirms that
LC’s improvement over AMD is due to the improved local-
ity, and not just vectorization or instruction efficiency.

In comparison to Intel, LC achieves a geomean speedup
of 1.71×. As for instruction count, LC achieves a geomean
of 0.98× the number of instructions of Intel. This result
demonstrates that LC’s improvement over Intel is due to lo-
cality, not instruction efficiency. Moreover, LC with vector-
ization turned off is still able to match Intel’s implementation
with vectorization turned on, achieving a geomean speedup
of 1.04×. This result reflects the importance of considering
locality, and not just instruction throughput, when schedul-
ing work-items.

Table 4 summarizes the comparison between our ap-
proach and the other industry implementations for L1 data
cache misses, speedup, and other metrics.

The conclusion drawn from this experiment is:



Metric LC/AMD LC/Intel 

Speedup 3.32x 1.71x 

L1 Data Cache Misses 0.10x 0.30x 

Data TLB Misses 0.26x 0.33x 

LLC Misses 0.92x 0.77x 

Table 4: Geomeans summarizing the comparison of locality-
centric scheduling with industry implementations.

• Our OpenCL implementation with locality-centric schedul-
ing meets industry performance standards and outper-
forms state-of-the-art industry implementations.

5. Related Work
Compilers such as MCUDA [36, 37], SnuCL [23] and Jo
et al.’s work [16] use scalar work-item loops to serialize
execution of work-items in a work-group. The technique
is called work-item coalescing by Lee et al. [25] and it is
the same as the DFO scheduling discussed in this paper.
AMD’s implementation [13] employs user-level threads for
serializing work-items which has an effect similar to scalar
work-item loops, hence DFO scheduling. The disadvantage
of AMD’s approach is that it does not allow compile-time
optimizations across work-items such as scalarization of uni-
form variables. Intel [33], Karrenberg et al. [17, 18], and
Kerr et al. (for CUDA) [20] use explicitly strip-mined work-
item loops, emitting vectorized code to exploit SIMD in-
structions when executing adjacent work-items. On the other
hand, pocl [15] uses annotated work-item loops, outsourcing
the strip-mining to an existing loop vectorizer. Strip-mined
work-item loops achieve a memory access ordering that has
slightly more breadth than a pure DFO schedule (as much as
the vector width), but not nearly as much breadth as a BFO
schedule for medium and larger work-group sizes. Our work
is the first to: (1) implement and demonstrate the advantage
of BFO scheduling, and (2) use a selective rather than fixed
schedule to optimize for locality.

The quality of vectorization is largely degraded in the
presence of control divergence because predication tech-
niques [17, 18, 29, 33, 35] need to be employed. Kerr et
al. [20] and Timnat et al. [40] address this problem by
branching to predication-free code when all work-items are
active at runtime, and falling back on predicated or serialized
code otherwise. Selecting between multiple code versions
based on a runtime divergence check is parallel to our work
on vectorizing BFO scheduled code. Implicit vectorization
using loop annotations and a third party vectorizer is adopted
by pocl [15] and also studied in Jo et al.[16]. Although our
approach also uses loop annotations to vectorize, it differs
in that the dynamic divergence check results in loops which
are more easy to vectorize by the underlying compiler.

Ocelot [10] and Kerr’s work [20] execute CUDA kernels
on CPUs and other architectures as well. Lee et al. [25] pro-
pose an OpenCL platform targeting Cell, with particular in-
terest in data memory management and coherency. The pocl
implementation [15] has support for ARM, MIPS and other
architectures as it relies on LLVM for target code generation.
All of these works either implement work-item loops (with
vectorization for some) or rely on a third party OpenCL im-
plementation such as AMD and Intel in order to execute
work-items on scalar computing units. Therefore, they are
bound to a fixed scheduling policy (DFO in practice).

Seo et al. [34] have proposed a profiling-based approach
for choosing work-group sizes in pursuit of working set
and load balancing optimizations. Their approach shows that
nesting of multi-dimensional work-item loops can be shuf-
fled for locality. However, it does not consider optimizing
kernel loops and work-item loops as a whole which is what
locality-centric scheduling does. Lee et al. [26] have pro-
vided a performance analysis of CPU OpenCL stacks in
varying work-group sizes, thread coarsening factors, and
memory access patterns. Shen et al. [35] have compared
performance between CPU and GPU OpenCL stacks from
using a same source code. However, these works do not
identify nor analyze the performance implications of work-
item scheduling. An interesting observation in [10] as well
as [35] is that altered memory access pattern compared to
a corresponding GPU execution degrades performance sig-
nificantly on CPUs. This is largely due to the suboptimally
placed work-item loops and subsequent memory access or-
dering by their respective implementations, which does not
reveal any concern for locality and motivates our approach.
Our approach generates locality friendly code so that data
layout transformation as suggested in [35] is not required.
Instead of changing the data layout to match the execution
order, we change the execution order to match the data lay-
out so that the same data structures can be used for both the
CPUs and GPUs alike.

Lee et al. [27] have proposed a compiler technique for
exploiting scalar units in recent GPU architectures. A sim-
ilar goal was sought by Collange et al. in [7] where mi-
croarchitectural modification was added for detecting uni-
form and affine vectors at runtime. Magni et al. [28] evaluate
the performance of thread coarsening with various parame-
ters, and consider redundancy elimination across coarsened
threads an important optimization. Uniform variable analy-
sis [17, 36] and divergence analysis [8] serve similar goals
in most OpenCL compilers [15, 17, 33, 36] including ours.

There is a substantial body of literature on loop analy-
ses and optimizations [19, 30]. Polyhedral-model-based ap-
proaches [3, 24, 32] have been shown to yield highly op-
timized loop nests via tiling of affine loop iteration space,
although they typically require affine loops and array sub-
scripts on the input code. Theoretically, BFO code can be
derived from DFO code through a series of scalar expan-



sions, loop distributions, and selective interchanges of work-
item loops and kernel loops. However, this is difficult and
sometimes infeasible in practice for the reasons mentioned
in Section 3.3. For this reason, BFO-scheduled loops are
more effectively generated from OpenCL kernels directly as
proposed in this paper.

We do not provide performance comparisons with other
CPU parallel programming models such as OpenMP [9] and
TBB [31]. Comparisons between OpenCL for CPUs to such
models can be found in the literature [1, 26, 35]. These
studies found that industry OpenCL compilers (which we
outperform) achieve comparable performance to OpenMP
and TBB. The comparison of our particular compiler is the
subject of future work.

GPU simulators [2, 6] have played a pioneering role in
GPU research. They execute OpenCL or CUDA code on
CPUs for the purpose of modeling and design studies. How-
ever, their goal is not high-performance execution.

6. Conclusion
In this work, we show that the state-of-the-art (depth-first)
approach to scheduling work-items in existing OpenCL
compilers for CPUs can result in suboptimal memory ac-
cess patterns for certain workload classes. We present a sec-
ond (breadth-first) work-item schedule and propose a static
analysis and transformation which correctly selects and gen-
erates the schedule resulting in better data locality. Our lo-
cality centric scheduling results in geomean L1 data cache
miss reductions of 9.81× over AMD and 3.35× over In-
tel, and geomean speedups of 3.32× over AMD and 1.71×
over Intel, based on on real hardware measurements. As the
memory system becomes increasingly important for perfor-
mance and energy efficiency in future computing systems,
the appropriate selection of work-item schedules will play
an even more important role in the future.
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