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Abstract—K-truss decomposition is an important method in
graph analytics for finding cohesive subgraphs in a graph.
Various works have accelerated k-truss decomposition on GPUs
and have proposed different optimizations while doing so. The
combinations of these optimizations form a large design space.
However, most GPU implementations focus on a specific combi-
nation or set of combinations in this space.

This paper surveys the optimizations applied to k-truss decom-
position on GPUs, and presents KTRUSSEXPLORER, a framework
for exploring the design space formed by the combinations
of these optimizations. Our evaluation shows that the best
combination highly depends on the graph of choice, and analyses
the conditions that make each optimization attractive. Some
of the best combinations we find outperform previous Graph
Challenge champions on many large graphs.

I. INTRODUCTION

A k-truss is a subgraph of a graph such that every edge
in the subgraph participates in at least k − 2 triangles in the
subgraph. K-truss decomposition discovers the maximal k-
trusses in a graph for k ≥ 2. Samsi et al. [11] describe the
problem in detail. A popular algorithm for finding a k-truss is
to count the triangles that each edge participates in (i.e., an
edge’s support), delete the edges with support less than k− 2
(i.e., weak edges), and iteratively repeat this process until no
edges are deleted. Triangles are typically found by intersecting
the adjacency lists of an edge’s endpoints.

Various works have accelerated k-truss decomposition on
GPUs and have proposed different optimizations while doing
so. These optimizations include using a directed graph [4],
[9], directing edges by degree [4], [9], tiling the adjacency
matrix [9], [13], parallelizing list intersection operations [4],
[9], removing deleted edges from the graph data structure in
between iterations [4], [5], [6], only recounting the support
of edges affected by deletions [1], [4], [6], [8], [10], and
others. The combinations of these optimizations form a large
design space. However, most GPU implementations focus on
a specific combination or set of combinations in this space.

To address this issue, we present KTRUSSEXPLORER, a
framework for exploring the design space of k-truss decompo-
sition optimizations on GPUs. KTRUSSEXPLORER consists of
multiple configurable kernel implementations. The framework
is highly parameterized, allowing users to specify any combi-
nation of many of the optimizations mentioned previously. Our
evaluation shows that the best optimization combination highly

depends on the graph of choice. We also perform a quantita-
tive analysis of the conditions that make each optimization
attractive. Some of the best combinations we find outperform
previous Graph Challenge champions on many large graphs.
KTRUSSEXPLORER has been open-sourced to help further
advance research on k-truss decomposition optimizations.

II. KTRUSSEXPLORER

This section surveys the literature on optimizations for k-
truss decomposition on GPUs while describing how these
optimizations are supported in KTRUSSEXPLORER.

A. Edge-Centric and Vertex-Centric Parallelization

One key distinction between parallel implementations is
whether they are edge-centric [1], [6], [10], [12] or vertex-
centric [3], [4]. Edge-centric implementations assign a thread
(or group of threads) to each edge to find the support of that
edge. Vertex-centric implementations assign a thread (or group
of threads) to each vertex to find the support of that vertex’s
outgoing edges.

The edge-centric approach makes load balancing easier than
the vertex-centric approach where different vertices may have
a substantially different number of outgoing edges whose
support needs to be computed. On the other hand, the vertex-
centric approach works with a CSR representation of the
graph whereas the edge-centric approach typically uses more
memory to store a COO+CSR representation to look up the
endpoints of each edge. Moreover, the vertex-centric approach
enables optimizations that target edges that share the same
source vertex, such as laying out the source vertex’s adjacency
list as a bitmap for all its outgoing edges to share [3], [4].

Linear algebraic formulations [5] can also be classified as
edge-centric or vertex-centric depending on how the sparse
matrix multiplication is implemented. Assigning threads to
nonzeros corresponds to an edge-centric implementation,
whereas assigning threads to rows corresponds to a vertex-
centric implementation.

KTRUSSEXPLORER currently only implements the edge-
centric parallelization approach.

B. Graph Directedness

Another key distinction between implementations is the use
of undirected graphs [1], [8] or directed graphs [3], [4], [9]. In
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Fig. 1: Discovering Triangles Based on Graph Directedness

linear algebraic terms, using directed graphs is equivalent to
operating on triangular matrices [5]. The distinction between
using undirected and directed graphs is illustrated in Fig. 1.
With an undirected graph, each edge’s thread discovers the
triangles that the edge participates in independently. However,
each triangle is redundantly discovered six times as shown in
Fig. 1(a). With a directed graph, each triangle is discovered
only once. For example, in Fig. 1(b), only edge {0, 1}’s
endpoints have a common neighbor so only that edge’s thread
will discover a triangle. However, although redundancy is
reduced, the thread that discovers the triangle must update the
support of all edges involved which requires atomic operations.

Using a directed graph has many advantages. First, fewer
edges are stored which reduces memory capacity and band-
width requirements. Second, triangles are not discovered re-
dundantly which reduces the amount of work. Third, adjacency
lists are shorter which makes intersecting them faster.

On the other hand, using undirected graphs also has ad-
vantages owing to the fact that each edge’s thread finds the
edge’s support independently. First, no atomic operations are
needed to update support values. Second, a thread may stop an
intersection operation earlier if certain conditions are met [12].
One such condition is when one of the two adjacency lists is
smaller than k−2. In this case, it is impossible for the thread’s
edge to participate in k − 2 triangles so there is no need to
attempt the intersection. Another such condition when k − 2
triangles are found but the intersection operation is not yet
complete. In this case, the thread does not need to continue
the operation because it has already established that the edge
is not weak. These early stopping conditions cannot be applied
with directed graphs because a thread is also responsible for
updating the support of other edges, not just the one it owns.

Still, undirected graphs suffer from the redundancy of
discovering triangles six times. As an optimization, some
works use undirected graphs but only count triangles for
one of the edge directions [6], [10], [12] which reduces the
redundancy from six to three. In linear algebraic terms, this
optimization is equivalent to using the full adjacency matrix as
an input, but only computing a triangular matrix as an output,
taking advantage of the fact that the output is symmetric. The
drawback of this approach is that if an edge has weak support
and needs to be deleted, finding the reverse edge to delete it
as well can be expensive.

KTRUSSEXPLORER provides an option for selecting be-
tween directed and undirected graphs. For undirected graphs,
both conditions for stopping the intersection operation early
are implemented, and triangles are counted for both directions
of each edge (i.e., each triangle is discovered six times).

C. Directing Edges by Degree

A simple approach for converting an undirected graph to a
directed one is to keep only the edges from the vertex with
the lower index to the vertex with the higher index, i.e., direct
edges by index. Another approach is to keep the edges from
the vertex with lower degree to the vertex with higher degree,
i.e., direct edges by degree. The latter approach is good for
keeping adjacency lists short. With undirected graphs, high-
degree vertices have long adjacency lists which are expensive
to intersect. Directing edges by degree significantly shrinks
the adjacency lists of high-degree vertices.

Directing edges by degree has been done in two ways. One
way is to simply remove the edges from higher-degree to
lower-degree vertices from the graph [6], [9]. Another way is
to sort vertices by increasing degree, relabel vertices according
to their sort index, and then direct edges by index [4].

KTRUSSEXPLORER provides an option for directing graphs
by index or by degree. Directing by degree is currently
implemented by sorting, relabelling, then directing by index.

D. Tiling

Tiling refers to partitioning of the adjacency matrix into
tiles. Tiling has been evaluated in the literature for triangle
counting on GPUs [9], [13]. KTRUSSEXPLORER applies tiling
to k-truss decomposition on GPUs. We discuss tiling at more
length than other optimizations because it has received less
attention in the literature and its implementation varies across
different works.

An example of how tiling is implemented in KTRUSS-
EXPLORER is shown in Fig. 2. Fig. 2(b) shows the logical
adjacency matrix of the graph in Fig. 2(a) and Fig. 2(c) shows
how it is physically stored as a CSR data structure (we use
a hybrid COO+CSR but omit the COO part in the figure).
Fig. 2(d) shows the same adjacency matrix with tiling applied
and Fig. 2(e) shows how it is physically stored as a tiled CSR
data structure. The matrix is logically divided into 2D square
tiles, with each tile’s edges stored contiguously. We refer to
the number of tiles in each dimension as the tiling factor.

Fig. 3 is used to illustrate the advantages of tiling. In each
subfigure, the three matrices represent different logical views
of the same physical data structure. The view to the bottom
right depicts how threads are assigned to edges. The view to
the left depicts how a thread traverses the adjacency list of its
edge’s source vertex. The view on top depicts how a thread
traverses the adjacency list of its edge’s destination vertex.

The first advantage of tiling is that it improves data locality.
In Fig. 3(a), the first four threads in the grid are assigned to the
first four edges of the CSR data structure which all have the
same source vertex but different destination vertices. Hence,
there is high spatial and temporal locality when accessing the
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Fig. 2: Example of Tiling an Adjacency Matrix

source vertex adjacency lists, but poor spatial and temporal
locality when accessing the destination vertex adjacency lists.
In contrast, in Fig. 3(b), the four threads are assigned to the
first four edges of a tile. In this case, accesses to both source
and destination vertex adjacency lists exhibit good spatial and
temporal locality because of tiling.

We also tried loading tiles to shared memory for faster
access, however, we found that doing so significantly hurt
performance. The reason is that some data in a tile may not be
needed so loading that data to shared memory is wasteful. For
example, in Fig. 3(b), vertex 2’s adjacency list is not needed
by any thread. Loading the entire tile to shared memory would
result in vertex 2’s adjacency list being loaded even though it
is not needed. For this reason, we do not use shared memory
and rely on the L1 cache for fast access to reused data.

The second advantage of tiling is that it partitions long
intersection operations into multiple shorter sub-intersections.
This partitioning makes intersection operations faster because
it allows skipping edges in a sublist if the other sublist is empty
or has reached the end. For example, in Fig. 3(c), the thread
assigned to edge {2, 5} needs multiple steps to intersect the
adjacency lists of vertices 2 and 5. In contrast, in Fig. 3(d) with
tiling, the intersection is partitioned into two sub-intersections.
Sub-intersection 1 takes zero steps because the sublist of vertex
2’s adjacency list is empty. Sub-intersection 2 also takes zero
steps because the sublist of vertex 5’s adjacency list is empty.
Therefore, the intersection takes fewer steps overall and loads
less data from memory. This affect is similar to that achieved
by Intersect-Path [7], except that Intersect-Path finds sublists
dynamically rather than partitioning the data structure.

KTRUSSEXPLORER provides an option for specifying
whether or not to apply tiling and the tiling factor of choice.
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(a) Memory Access Pattern without Tiling (b) Memory Access Pattern with Tiling
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Fig. 3: Impact of Tiling

E. Parallelizing Intersections

Various works parallelize individual intersection operations
to further extract parallelism from the computation. This
parallelization typically divides one of the lists across multiple
threads and has each thread find the corresponding edge(s) in
the other list via binary search [9] or a bitmap lookup [3], [4].

KTRUSSEXPLORER parallelizes intersections in the con-
text of tiling. Recall that with tiling, each intersection op-
eration is partitioned into multiple sub-intersections. These
sub-intersections can be performed in parallel. KTRUSS-
EXPLORER assigns multiple threads to each intersection oper-
ation (up to the tiling factor) and divides the sub-intersections
across these threads. Each sub-intersection is performed se-
quentially by one thread. In the absence of tiling, the whole
intersection operation is performed sequentially by one thread.

We refer to the number of threads assigned per intersection
as the parallelization factor. KTRUSSEXPLORER provides an
option for experimenting with different parallelization factors.

F. Removing Deleted Edges Intermediately

When a weak edge is deleted during an iteration, it may
be marked as deleted and kept in the graph data structure or
it may be removed from the data structure entirely before the
next iteration. The advantage of removing edges intermediately
is that it shrinks adjacency lists making intersections faster,
and reduces the graph’s memory footprint. The disadvantage
is that removing edges is more expensive than simply marking
them as deleted. For this reason, some works do not remove
edges in between iterations [9], [10], [12], some remove them
every iteration [3], [4], [5], [6], and some remove them only
if enough edges have been deleted [1].

Removing deleted edges from the graph data structure can
be done via a stream compaction operation that filters out
edges marked as deleted. Stream compaction can be done
on the entire edge list [1] or on each vertex’s adjacency
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Fig. 4: Recomputing Support Values for Affected Edges

list separately [3], [4], [5]. Compacting the entire edge list
is more expensive because the array to be compacted is
larger, and because the CSR pointers need to be recomputed
after the compaction. On the other hand, compacting each
vertex’s adjacency list separately requires more metadata to
track where each vertex’s adjacency list ends.

KTRUSSEXPLORER provides an option for specifying for
how many initial iterations (if any) edges should be removed.
This approach is based on the observation that the largest
number of edges is removed in the first few iterations and
decreases as iterations proceed. Edges are removed via stream
compaction of the entire edge list using the in-place stream
compaction primitive in Thrust [2]. Compacting each vertex’s
adjacency list separately is not yet supported.

G. Recomputing Support Values

Deleting a weak edge breaks the triangles that the edge
participates in which may affect the support of the edges that
share a vertex with the deleted edge. These edges are referred
to as affected edges. When recomputing support values across
iterations, it is sufficient to recompute the support of affected
edges and unnecessary to recompute for all edges.

The advantage of recomputing the support of only af-
fected edges is that it eliminates unnecessary work. However,
the disadvantage is that it incurs additional overhead for
identifying which edges are affected. For this reason, some
works recompute the support of all undeleted edges [5], [9],
[12] while others recompute the support of only the affected
edges [1], [3], [4], [6], [8], [10].

Deciding which edges’ threads should recount triangles
differs between undirected graphs and directed graphs. This

TABLE I: Design Space Explored
Optimization Options

Graph Directedness undirected, directed by index, directed by degree
Tiling no tiling, tiling with a factor of {2, 4, 8, 16}

Parallelizing Intersections no parallelization, parallelization with a factor of {2, 4, 8, 16}

Removing Edges Intermediately no iterations, first {1, 2, 4, 8} iterations, all iterations
(edges are also always removed at the end for all combinations)

Recomputing Support Values all edges, affected edges

distinction is shown in Fig. 4. In the undirected graph in
Fig. 4(a), each thread is solely responsible for computing its
edge’s support. Therefore, only the affected edges’ threads
need to recount triangles. However, for directed graphs, an
edge may not be affected, but its thread may be responsible for
finding a triangle on behalf of an affected edge and updating
its support. Therefore, it is not sufficient for only the affected
edges’ threads to recount. Threads assigned to any edge that
shares a vertex with an affected edge must also recount. For
example, in Fig. 4(b), edge {2, 3} is not affected by the
deletion of edge {4, 5}. However, its thread must recount
because it must notify edge {3, 4} which is affected that it
is part of the triangle {2, 3, 4}. The pseudocode for marking
affected edges is shown in Fig. 4(c).

Another optimization related to recomputing support values
is specific to the case when k = 3. When k = 3, any edge
deleted in the first iteration does not belong to a triangle.
Hence, no triangles are broken in the first iteration, so no
further iterations are needed to recompute support values [3].

KTRUSSEXPLORER provides an option for specifying
whether to recompute support values of all undeleted edges or
only affected edges for both directed and undirected graphs.
If k = 3, only one iteration is performed.

III. METHODOLOGY

We evaluate KTRUSSEXPLORER using a Volta V100 GPU
with 16GB of device memory coupled with an AMD EPYC
7551P CPU with 15GB of main memory. We evaluate with all
the data sets in the graph challenge collection [11] except for
Friendster, graph500-scale24-ef16, and graph500-scale25-ef16
due to limited device memory capacity. We report results for
k = 3, and for k = kmax when kmax is not 3.

The design space explored is summarized in Table I. For
k = 3, the space is searched exhaustively for graphs with
less than 17 million edges. For larger graphs, only a subset of
the combinations are searched based on which combinations
did best with the other graphs. For graphs where the best
parallelization factor was 16, a parallelization factor of 32
is also attempted. Since k = 3 only needs one iteration to
converge, edges are removed once at the end and recomputing
support values is not relevant.

For each combination, we report the mean of 10 runs after
discarding 5 warm up runs. For large graphs, we take the mean
of 5 runs with no warm up runs. The time reported includes:
counting triangles, marking edges as deleted, data transfer
from device to host to check for convergence, removing
deleted edges intermediately for relevant combinations, remov-
ing deleted edges at the end for all combinations, and marking
affected edges for relevant combinations. The time reported
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does not include: allocation and deallocation time, initial and
final copy time, and initial and final graph conversion time
(COO to CSR, relabelling vertices, undirected to directed).

IV. EVALUATION

Fig. 5(a) shows how the execution time (in milliseconds)
for the best optimization combination scales with the number
of edges for k = 3. Details on the best combination found for
each graph and the breakdown of the execution time can be
found in Table II for k = 3 and Table III for k = kmax. It is
clear that there is no best combination for all graphs and that
the best combination depends on the graph of choice. In the
rest of this section, we quantitatively analyze the conditions
that make each design decision or optimization attractive.

A. Edge-centric and Vertex-centric Parallelization

Since we do not currently support a vertex-centric imple-
mentation, we compare the edge-centric implementation in
KTRUSSEXPLORER to the vertex-centric implementation in
Bisson & Fatica [4] using the kernel times reported in that
work. Bisson & Fatica [4] are also the 2018 Graph Challenge
champions. Fig. 5(b) shows the speedup of the edge-centric
implementation over the vertex-centric implementation for
k = 3. It is clear that the vertex-centric implementation is
superior for smaller graphs, but as the graphs get larger, the
edge-centric implementation becomes competitive on many
graphs (up to 5.4× faster). Recall from Section II-A that the
advantage of edge-centric parallelization over vertex-centric
parallelization is that edge-centric parallelization makes load
balancing easier. The importance of load balance becomes
more pronounced as the graphs grow in size.

Note however that this comparison has some limitations
because different optimizations are applied to each implemen-
tation so there may be other factors impacting the performance
difference. For this reason, we plan to support a vertex-centric
implementation in KTRUSSEXPLORER as future work in order
to have a more controlled comparison.

B. Graph Directedness

Table II shows that most graphs have better performance
when a directed graph is used. However, a significant number
of graphs perform better when an undirected graph is used.
The preference for undirected graphs is independent of graph
size as there are very small as well as very large graphs that
do better when the graph is undirected. We observe that the
preference for undirected graphs is correlated with the average
number of triangles per edge in the graph.

Fig. 5(c) shows how the average number of triangles per
edge impacts the speedup of the best combination that uses
a directed graph over the best combination that uses an undi-
rected graph. It is clear that when the number of triangles per
edge becomes large, undirected graphs perform better. Recall
from Section II-B that the advantages of undirected graphs
are that they do not need atomic operations to update support
values, and that intersection operations can be stopped early
as soon as the threshold for an edge not being weak is met.
When the number of triangles per edge is high, support values
will be updated frequently, intersection operations will be long,
and the chances of meeting the threshold early will be high.
Hence, avoiding atomic operations and stopping intersections
early are features that make undirected graphs attractive.



C. Directing Edges by Degree

Table II shows that the overwhelming majority of cases
where a directed graph is preferred, directing edges by degree
is the faster option. We observe that the extent to which
directing edges by degree is better than by index correlates
with the maximum vertex degree in the graph.

Fig. 5(d) shows how the maximum vertex degree impacts
the speedup of the best combination that directs edges by
degree over the best combination that directs edges by index.
It is clear that as the maximum vertex degree increases,
the benefit of directing edges by degree increases. Recall
from Section II-C that the advantage of directing edges by
degree is reducing the size of the adjacency lists for high-
degree vertices. Hence, directing the graph by degree is more
attractive as the degree of high-degree vertices increases.

D. Tiling

Table II shows that some graphs have better performance
when tiling is applied while others are better off without
tiling. We observe that the preference for tiling is correlated
with the average vertex degree in the graph. Fig. 5(e) shows
how the average vertex degree impacts the speedup of the
best combination that applies tiling over the best combination
that uses does not apply tiling. It is clear that as the average
vertex degree increases, the benefit of tiling increases. Recall
from Section II-D that one of the advantages of tiling is
that it partitions long intersection operations into shorter sub-
intersections. As the average vertex degree increases, the
intersection operations become longer and partitioning them
becomes more important. Hence, tiling is more attractive when
the average vertex degree is high.

E. Parallelizing Intersections

Table II shows that some graphs have better performance
when individual intersection operations are parallelized while
others do not. Fig. 5(f) shows how the size of the graph (num-
ber of edges) impacts the speedup of the best combination that
parallelizes intersections over the best combination that does
not. It is clear that the advantage of parallelizing intersections
diminishes for large graphs. Recall from Section II-E that the
advantage of parallelizing intersection operations is to extract
more parallelism from the computation. For large graphs,
there is a sufficient amount of parallelism to fully utilize
the device because there are many intersections to perform.
Hence, extracting more parallelism becomes less attractive as
the graph gets larger.

F. Removing Deleted Edges Intermediately

For k = 3, only one iteration is needed for convergence
so edges are always removed once at the end. Table II shows
that a significant fraction of the computation is spent removing
deleted edges at the end. This overhead is particularly high
for small graphs, where removing deleted edges at the end
accounts for up to 80% of the execution time. We plan to
reduce this overhead by further optimizing the stream com-
paction operation, as well as supporting stream compaction on

each vertex’s adjacency list separately [3], [4], [5] as opposed
to the entire edge list.

For k = kmax, Table III shows that most graphs have
better performance when deleted edges are not removed in-
termediately, but we expect that reducing the overhead of
stream compaction should allow more graphs to show benefit.
We observe that the preference for removing deleted edges
intermediately is correlated with the number of edges in the
graph. Fig. 5(g) shows how the number of edges impacts
the speedup of the best combination that removes deleted
edges intermediately over the best combination that does not.
It is clear that the advantage of removing deleted edges
intermediately increases with the number of edges. Recall
from Section II-F that the benefit of removing deleted edges
is shrinking intersections and reducing the memory footprint,
which is more critical as graphs get larger.

G. Recomputing Support Values
For k = 3, only one iteration is needed for convergence

so recomputing edge support values is not relevant. For
k = kmax, Table III shows that all except a few very large
graphs have better performance when the support of all edges
is recomputed, not just affected edges. We plan to further
optimize the feature of recomputing the support of affected
edges. First, we observe that in the initial iterations where
many edges are deleted, the number of affected edges is very
large. Hence, the overhead of tracking affected edges is not
worth the effort it saves. For this reason, we plan to provide the
option to track affected edges for only later iterations where
the affected edges are few. Second, our current implementation
launches threads for all edges and each thread checks if it
needs to recount or not. Hence, computational resources are
still allocated for threads that do not need to recount and there
is high control divergence. Instead, we plan to reduce this
divergence by creating a frontier of edges whose threads need
to recount and only launching threads for those edges.

V. CONCLUSION

This paper surveys the optimizations applied to k-truss
decomposition on GPUs, and presents KTRUSSEXPLORER,
a framework for exploring the design space formed by the
combinations of these optimizations. The optimizations sup-
ported include using a directed graph, directing edges by
degree, tiling the adjacency matrix, parallelizing list inter-
section operations, removing deleted edges from the graph
in between iterations, and recomputing support values for
only affected edges. Future work includes supporting vertex-
centric parallelization, expanding and enhancing the selection
of supported optimizations, and leveraging properties of the
graph to prune the search space or infer the best combination
rather than search the space exhaustively.
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TABLE II: Execution Time (in milliseconds) for the Best Configuration for k = 3

Graph Number of Number of Directedness Tiling Parallelizing Intersections Threads Time % Triangle % Marking % Removing
Vertices Edges (tiling factor) (parallelization factor) per Block (ms) Counting Deleted Edges Deleted Edges

Theory-3-4-B1k 20 31 undirected 8 8 128 0.191 6.0% 5.0% 77.1%
Theory-3-4-B2k 20 31 undirected 8 2 256 0.183 6.7% 4.5% 78.7%
Theory-4-5-B1k 30 49 undirected 2 no parallelization 128 0.192 6.3% 5.4% 76.7%
Theory-4-5-B2k 30 49 undirected 2 2 128 0.192 6.0% 5.1% 74.4%
Theory-5-9-B1k 60 104 directed by index 8 8 256 0.193 6.9% 5.3% 75.1%
Theory-5-9-B2k 60 104 directed by degree 4 4 1024 0.183 6.0% 4.7% 76.9%
Theory-9-16-B1k 170 313 directed by degree 2 2 128 0.194 6.8% 5.0% 76.6%
Theory-9-16-B2k 170 313 directed by index 4 2 256 0.187 7.0% 4.4% 77.2%
Theory-3-4-5-B1k 120 346 undirected 4 4 256 0.194 6.5% 5.7% 77.0%
Theory-3-4-5-B2k 120 346 directed by degree 2 no parallelization 1024 0.187 7.1% 4.9% 76.3%
Theory-16-25-B1k 442 841 undirected no tiling no parallelization 1024 0.194 6.9% 5.4% 73.2%
Theory-16-25-B2k 442 841 directed by degree 2 no parallelization 128 0.188 6.9% 4.9% 76.8%
Theory-4-5-9-B1k 300 940 directed by degree 2 no parallelization 128 0.195 7.5% 4.8% 77.2%
Theory-4-5-9-B2k 300 940 directed by degree 2 2 256 0.191 6.3% 4.7% 73.2%
Theory-5-9-16-B1k 1,020 3,448 directed by degree no tiling no parallelization 128 0.206 6.8% 5.7% 74.0%
Theory-5-9-16-B2k 1,020 3,448 directed by degree no tiling no parallelization 512 0.202 9.7% 5.3% 71.3%
Theory-25-81-B1k 2,132 4,156 directed by degree 8 no parallelization 512 0.211 7.0% 4.9% 75.8%
Theory-25-81-B2k 2,132 4,156 directed by degree no tiling no parallelization 512 0.199 6.7% 4.8% 77.4%
Theory-3-4-5-9-B1k 1,200 6,583 directed by degree no tiling no parallelization 128 0.212 7.6% 4.8% 76.1%
Theory-3-4-5-9-B2k 1,200 6,583 directed by degree 16 4 512 0.206 6.0% 3.5% 80.2%
as20000102 6,474 12,572 directed by degree 8 4 512 0.205 7.5% 4.7% 74.4%
ca-GrQc 5,242 14,484 directed by index 8 8 256 0.212 7.7% 4.7% 73.9%
Theory-9-16-25-B1k 4,420 15,988 directed by degree 2 no parallelization 128 0.226 9.1% 4.3% 74.3%
Theory-9-16-25-B2k 4,420 15,988 directed by degree 4 4 512 0.216 7.5% 3.9% 76.9%
p2p-Gnutella08 6,301 20,777 directed by degree 2 2 256 0.208 7.8% 5.8% 72.1%
oregon1 010407 10,729 21,999 directed by degree 8 4 256 0.216 8.9% 4.9% 72.4%
oregon1 010331 10,670 22,002 directed by degree 4 2 512 0.215 8.9% 4.9% 72.9%
oregon1 010414 10,790 22,469 directed by degree no tiling no parallelization 256 0.216 9.6% 5.2% 72.9%
oregon1 010428 10,886 22,493 directed by degree no tiling no parallelization 1024 0.209 9.9% 4.9% 72.8%
oregon1 010505 10,943 22,607 directed by degree 16 16 256 0.218 8.7% 4.5% 73.6%
oregon1 010512 11,011 22,677 directed by degree 16 16 512 0.217 9.2% 4.6% 72.8%
oregon1 010519 11,051 22,724 directed by degree 2 no parallelization 1024 0.218 9.6% 4.4% 73.0%
oregon1 010421 10,859 22,747 directed by degree 4 4 1024 0.218 10.8% 5.8% 71.5%
oregon1 010526 11,174 23,409 directed by degree 16 16 128 0.219 9.6% 4.4% 73.3%
ca-HepTh 9,877 25,973 directed by index 8 4 256 0.214 8.4% 4.8% 73.2%
p2p-Gnutella09 8,114 26,013 directed by degree 16 2 1024 0.210 8.6% 4.6% 72.5%
oregon2 010407 10,981 30,855 directed by degree 4 no parallelization 512 0.230 12.9% 5.1% 68.8%
oregon2 010505 11,157 30,943 directed by degree 2 no parallelization 512 0.227 11.5% 5.0% 70.8%
Theory-4-5-9-16-B1k 5,100 31,036 directed by degree 2 2 512 0.239 10.1% 4.0% 70.9%
Theory-4-5-9-16-B2k 5,100 31,036 directed by degree 8 2 128 0.226 12.2% 5.2% 70.5%
oregon2 010331 10,900 31,180 directed by degree 2 no parallelization 256 0.224 11.8% 4.3% 70.5%
oregon2 010512 11,260 31,303 directed by degree 4 4 128 0.226 12.8% 4.9% 68.8%
oregon2 010428 11,113 31,434 directed by degree 4 no parallelization 128 0.226 12.1% 4.5% 70.8%
p2p-Gnutella06 8,717 31,525 directed by degree 8 8 128 0.199 7.2% 6.1% 74.9%
oregon2 010421 11,080 31,538 directed by degree 4 2 512 0.216 12.3% 5.0% 70.0%
oregon2 010414 11,019 31,761 directed by degree 2 no parallelization 128 0.214 13.1% 5.5% 67.9%
p2p-Gnutella05 8,846 31,839 directed by degree 4 no parallelization 256 0.218 7.7% 5.0% 70.0%
oregon2 010519 11,375 32,287 directed by degree no tiling no parallelization 256 0.235 12.2% 4.9% 70.0%
oregon2 010526 11,461 32,730 directed by degree 8 2 512 0.237 11.6% 5.0% 69.9%
p2p-Gnutella04 10,876 39,994 directed by degree 8 4 256 0.220 7.0% 4.9% 75.6%
Theory-81-256-B1k 21,074 41,809 directed by degree 8 8 512 0.238 9.0% 4.2% 74.7%
Theory-81-256-B2k 21,074 41,809 directed by degree 2 2 1024 0.232 8.5% 4.4% 73.3%
facebook combined 4,039 44,117 undirected 8 2 512 0.291 22.1% 3.7% 59.8%
as-caida20071105 26,475 53,381 directed by degree 4 no parallelization 256 0.228 11.1% 5.2% 71.1%
p2p-Gnutella25 22,687 54,705 directed by degree no tiling no parallelization 256 0.222 8.3% 5.6% 71.8%
p2p-Gnutella24 26,518 65,369 directed by index 16 4 1024 0.222 9.4% 5.2% 73.3%
p2p-Gnutella30 36,682 88,328 directed by index 4 4 512 0.223 7.9% 10.0% 69.3%
ca-CondMat 23,133 93,439 directed by degree no tiling no parallelization 512 0.234 12.1% 5.1% 69.9%
ca-HepPh 12,008 118,489 undirected 16 2 512 0.290 23.9% 8.0% 57.7%
Theory-16-25-81-B1k 36,244 137,164 directed by degree no tiling no parallelization 512 0.269 16.7% 3.9% 65.5%
Theory-16-25-81-B2k 36,244 137,164 directed by degree 4 2 128 0.255 11.9% 7.1% 66.7%
p2p-Gnutella31 62,586 147,892 directed by degree 2 no parallelization 1024 0.236 7.6% 6.8% 72.2%
Theory-5-9-16-25-B1k 26,520 175,873 directed by degree 2 2 128 0.333 26.8% 4.3% 55.4%
Theory-5-9-16-25-B2k 26,520 175,873 directed by degree no tiling no parallelization 256 0.273 18.1% 6.3% 63.5%
email-Enron 36,692 183,831 directed by degree 8 2 256 0.316 20.9% 4.5% 60.5%
ca-AstroPh 18,772 198,050 undirected 2 no parallelization 256 0.327 29.7% 3.8% 55.6%
loc-brightkite edges 58,228 214,078 directed by degree 4 2 128 0.298 19.1% 6.0% 61.6%
Theory-3-4-5-9-16-B1k 20,400 217,255 directed by degree 2 no parallelization 128 0.389 35.6% 3.3% 48.3%
Theory-3-4-5-9-16-B2k 20,400 217,255 directed by degree 16 4 128 0.293 18.2% 5.8% 59.8%
Theory-256-625-B1k 160,882 320,881 directed by degree no tiling no parallelization 256 0.356 21.5% 4.9% 63.2%
Theory-256-625-B2k 160,882 320,881 directed by degree no tiling no parallelization 128 0.292 15.7% 8.2% 64.3%
cit-HepTh 27,770 352,285 directed by degree 4 4 128 0.435 31.6% 4.6% 50.6%
email-EuAll 265,214 364,481 directed by degree no tiling no parallelization 128 0.348 21.2% 8.3% 59.0%
soc-Epinions1 75,879 405,740 directed by degree no tiling no parallelization 256 0.521 41.6% 4.9% 44.8%
cit-HepPh 34,546 420,877 directed by degree 16 8 1024 0.400 31.0% 5.5% 49.3%
soc-Slashdot0811 77,360 469,180 directed by degree no tiling no parallelization 256 0.479 35.0% 7.0% 49.0%
soc-Slashdot0902 82,168 504,230 directed by degree no tiling no parallelization 128 0.495 39.6% 7.6% 43.6%
amazon0302 262,111 899,792 directed by degree no tiling no parallelization 256 0.436 25.8% 13.2% 51.3%
loc-gowalla edges 196,591 950,327 directed by degree no tiling no parallelization 512 0.661 44.7% 8.5% 38.9%
flickrEdges 105,938 1,158,474 undirected 16 no parallelization 128 3.218 75.9% 6.0% 16.2%
roadNet-PA 1,088,092 1,541,898 directed by degree no tiling no parallelization 512 0.454 19.9% 18.6% 51.7%
Theory-4-5-9-16-25-B1k 132,600 1,582,861 directed by degree no tiling no parallelization 512 1.993 75.8% 1.5% 19.9%
Theory-4-5-9-16-25-B2k 132,600 1,582,861 directed by degree 2 no parallelization 256 0.886 53.9% 10.2% 28.3%
roadNet-TX 1,379,917 1,921,660 directed by degree no tiling no parallelization 256 0.532 21.3% 20.2% 49.4%
Theory-25-81-256-B1k 547,924 2,132,284 directed by degree no tiling no parallelization 128 1.833 69.6% 3.8% 23.2%
Theory-25-81-256-B2k 547,924 2,132,284 directed by degree 2 2 128 0.760 37.3% 15.8% 38.7%
amazon0312 400,727 2,349,869 directed by degree 4 2 512 1.053 42.7% 11.0% 40.3%
amazon0505 410,236 2,439,437 directed by degree 4 2 128 1.092 50.2% 11.8% 32.5%
amazon0601 403,394 2,443,408 directed by degree 4 2 512 1.218 47.6% 11.6% 34.2%
Theory-9-16-25-81-B1k 362,440 2,606,125 directed by degree no tiling no parallelization 128 3.192 78.7% 2.1% 17.1%
Theory-9-16-25-81-B2k 362,440 2,606,125 directed by degree no tiling no parallelization 128 1.229 58.1% 12.5% 24.1%
roadNet-CA 1,965,206 2,766,607 directed by index no tiling no parallelization 512 0.658 21.2% 25.9% 45.3%
graph500-scale18-ef16 174,147 3,800,348 undirected 16 no parallelization 128 11.745 89.1% 2.9% 7.2%
graph500-scale19-ef16 335,318 7,729,675 undirected 32 no parallelization 128 27.188 91.3% 2.6% 5.8%
Theory-3-4-5-9-16-25-B1k 530,400 11,080,030 directed by degree no tiling no parallelization 1024 27.837 91.7% 0.5% 7.6%
Theory-3-4-5-9-16-25-B2k 530,400 11,080,030 directed by degree no tiling no parallelization 1024 7.606 82.9% 8.7% 7.3%
graph500-scale20-ef16 645,820 15,680,861 undirected 32 no parallelization 128 72.228 93.5% 2.0% 4.3%
cit-Patents 3,774,768 16,518,947 directed by index 8 4 256 7.866 67.7% 12.4% 19.1%
MAWI Graph 1 18,571,154 19,020,160 directed by degree no tiling no parallelization 512 2.779 24.7% 37.0% 36.1%
Theory-5-9-16-25-81-B1k 2,174,640 28,667,380 directed by degree 2 2 128 104.308 93.3% 0.5% 6.1%
Theory-5-9-16-25-81-B2k 2,174,640 28,667,380 directed by degree 8 no parallelization 1024 26.609 89.4% 5.7% 4.6%
graph500-scale21-ef16 1,243,072 31,731,650 undirected 32 no parallelization 128 183.804 95.4% 1.4% 3.2%
MAWI Graph 2 35,991,342 37,242,710 directed by degree no tiling no parallelization 512 5.035 25.2% 38.6% 35.0%
Graph 5 - V2a 55,042,369 58,608,800 directed by degree no tiling no parallelization 256 11.543 50.9% 25.3% 23.1%
graph500-scale22-ef16 2,393,285 64,097,004 undirected 32 no parallelization 128 484.921 96.4% 1.1% 2.4%
Graph 3 - U1a 67,716,231 69,389,281 directed by degree no tiling no parallelization 256 13.082 48.7% 26.3% 24.2%
MAWI Graph 3 68,863,315 71,707,480 directed by degree no tiling no parallelization 256 9.456 27.1% 37.6% 34.3%
graph500-scale23-ef16 4,606,314 129,250,705 undirected 32 no parallelization 128 1,273.281 97.2% 0.8% 2.0%
MAWI Graph 4 128,568,730 135,117,420 directed by degree no tiling no parallelization 256 17.669 28.1% 37.8% 33.6%
Graph 2 - P1a 139,353,211 148,914,992 directed by degree no tiling no parallelization 256 29.643 40.4% 16.0% 43.4%
Graph 1 - A2a 170,728,175 180,292,586 directed by degree no tiling no parallelization 256 35.029 51.7% 25.5% 22.4%
Graph 4 - V1r 214,005,017 232,705,452 directed by degree no tiling no parallelization 256 41.740 48.3% 27.7% 23.8%
MAWI Graph 5 226,196,185 240,023,947 directed by degree no tiling no parallelization 256 34.052 29.0% 35.2% 35.6%



TABLE III: Execution Time (in milliseconds) for the Best Configuration for k = kmax

Graph Number of Number of
kmax

Number of Directedness Tiling Parallelizing Intersections Removing Edges Recomputing Threads Time % Triangle % Marking % Removing
Vertices Edges Iterations (tiling factor) (parallelization factor) Intermediately Support Values per Block (ms) Counting Deleted Edges Deleted Edges

Theory-3-4-5-B1k 120 346 6 3 directed by degree 2 no parallelization no iterations all edges 256 0.239 12.5% 9.7% 48.0%
Theory-3-4-5-B2k 120 346 4 2 directed by degree 8 8 no iterations all edges 512 0.218 11.2% 8.6% 60.1%
Theory-4-5-9-B1k 300 940 7 3 directed by degree 2 2 no iterations all edges 1024 0.234 15.6% 11.1% 52.1%
Theory-4-5-9-B2k 300 940 4 2 directed by degree no tiling no parallelization no iterations all edges 256 0.220 11.5% 8.8% 62.7%
Theory-5-9-16-B1k 1,020 3,448 8 3 directed by degree 16 8 no iterations all edges 256 0.279 14.5% 9.9% 52.4%
Theory-5-9-16-B2k 1,020 3,448 4 2 directed by degree no tiling no parallelization no iterations all edges 256 0.233 12.6% 8.3% 60.6%
Theory-3-4-5-9-B1k 1,200 6,583 10 3 directed by degree 4 no parallelization no iterations all edges 256 0.263 16.9% 9.8% 50.6%
Theory-3-4-5-9-B2k 1,200 6,583 5 3 directed by degree 16 2 no iterations all edges 1024 0.272 15.4% 11.0% 49.7%
as20000102 6,474 12,572 10 4 directed by degree 8 2 no iterations all edges 1024 0.335 17.9% 12.1% 46.0%
ca-GrQc 5,242 14,484 44 3 directed by degree 2 no parallelization no iterations all edges 256 0.345 21.7% 10.3% 48.7%
Theory-9-16-25-B1k 4,420 15,988 12 3 directed by degree 4 no parallelization no iterations all edges 128 0.312 16.9% 9.7% 52.1%
Theory-9-16-25-B2k 4,420 15,988 4 2 directed by degree 4 no parallelization no iterations all edges 512 0.257 12.5% 7.5% 63.2%
p2p-Gnutella08 6,301 20,777 5 7 directed by degree 8 8 no iterations all edges 128 0.438 20.6% 14.1% 34.2%
oregon1 010407 10,729 21,999 14 5 directed by degree 8 4 no iterations all edges 1024 0.398 20.8% 12.9% 40.3%
oregon1 010331 10,670 22,002 16 8 directed by degree 8 no parallelization no iterations all edges 512 0.573 27.0% 14.3% 28.1%
oregon1 010414 10,790 22,469 15 5 directed by degree 4 4 no iterations all edges 1024 0.422 22.0% 13.5% 38.6%
oregon1 010428 10,886 22,493 15 6 directed by degree 4 2 no iterations all edges 1024 0.445 21.3% 13.6% 36.0%
oregon1 010505 10,943 22,607 14 8 directed by degree 16 4 no iterations all edges 1024 0.550 23.9% 14.6% 32.1%
oregon1 010512 11,011 22,677 15 5 directed by degree 2 no parallelization no iterations all edges 256 0.404 21.3% 15.7% 38.3%
oregon1 010519 11,051 22,724 15 7 directed by degree no tiling no parallelization no iterations all edges 512 0.514 23.9% 15.0% 31.2%
oregon1 010421 10,859 22,747 15 6 directed by degree no tiling no parallelization no iterations all edges 256 0.461 24.3% 13.6% 35.6%
oregon1 010526 11,174 23,409 14 7 directed by degree 2 no parallelization no iterations all edges 1024 0.502 28.1% 14.0% 30.0%
ca-HepTh 9,877 25,973 32 3 directed by degree 8 4 no iterations all edges 128 0.336 18.0% 9.9% 50.3%
p2p-Gnutella09 8,114 26,013 5 6 directed by degree 4 no parallelization no iterations all edges 1024 0.409 19.8% 14.3% 36.6%
oregon2 010407 10,981 30,855 24 8 directed by degree 8 2 no iterations all edges 128 0.605 34.6% 13.1% 25.7%
oregon2 010505 11,157 30,943 21 10 directed by degree 4 no parallelization no iterations all edges 256 0.700 31.8% 14.1% 22.5%
Theory-4-5-9-16-B1k 5,100 31,036 12 3 directed by degree no tiling no parallelization no iterations all edges 512 0.347 22.1% 9.2% 45.4%
Theory-4-5-9-16-B2k 5,100 31,036 5 3 directed by degree 4 4 no iterations all edges 512 0.308 18.7% 10.3% 49.6%
oregon2 010331 10,900 31,180 25 12 directed by degree 16 2 no iterations all edges 512 0.833 34.3% 15.3% 21.2%
oregon2 010512 11,260 31,303 21 12 directed by degree no tiling no parallelization no iterations all edges 128 0.788 36.3% 14.6% 18.1%
oregon2 010428 11,113 31,434 21 11 directed by degree 4 no parallelization no iterations all edges 512 0.762 33.7% 14.0% 19.3%
p2p-Gnutella06 8,717 31,525 4 5 directed by degree 16 8 no iterations all edges 1024 0.377 17.6% 12.2% 39.6%
oregon2 010421 11,080 31,538 22 11 directed by degree no tiling no parallelization no iterations all edges 512 0.732 35.1% 15.3% 21.9%
oregon2 010414 11,019 31,761 24 11 directed by degree 2 no parallelization no iterations all edges 256 0.731 36.9% 14.7% 20.2%
p2p-Gnutella05 8,846 31,839 4 5 directed by degree no tiling no parallelization no iterations all edges 512 0.343 17.7% 13.6% 43.1%
oregon2 010519 11,375 32,287 24 7 directed by degree 4 no parallelization no iterations all edges 256 0.546 30.6% 13.5% 29.2%
oregon2 010526 11,461 32,730 25 7 directed by degree no tiling no parallelization no iterations all edges 512 0.516 29.9% 13.1% 31.8%
p2p-Gnutella04 10,876 39,994 4 3 directed by degree no tiling no parallelization no iterations all edges 128 0.271 14.6% 11.2% 53.2%
facebook combined 4,039 44,117 97 13 directed by degree no tiling no parallelization first 1 iterations all edges 256 1.595 50.5% 8.7% 23.6%
as-caida20071105 26,475 53,381 16 9 directed by degree 2 2 no iterations all edges 512 0.598 28.6% 13.9% 25.1%
p2p-Gnutella25 22,687 54,705 4 4 directed by degree no tiling no parallelization no iterations all edges 1024 0.323 15.8% 14.1% 44.8%
p2p-Gnutella24 26,518 65,369 4 4 directed by degree 2 no parallelization no iterations all edges 512 0.330 16.2% 11.8% 46.7%
p2p-Gnutella30 36,682 88,328 4 3 directed by degree 2 no parallelization no iterations all edges 512 0.259 14.3% 13.6% 48.7%
ca-CondMat 23,133 93,439 26 3 directed by degree 2 2 no iterations all edges 1024 0.345 19.0% 10.4% 50.5%
ca-HepPh 12,008 118,489 239 3 directed by degree 8 4 all 3 iteration all edges 128 1.081 49.5% 4.1% 37.5%
Theory-16-25-81-B1k 36,244 137,164 19 3 directed by degree no tiling no parallelization no iterations all edges 512 0.401 28.0% 9.9% 42.4%
Theory-16-25-81-B2k 36,244 137,164 4 2 directed by degree 2 no parallelization all 2 iteration all edges 128 0.301 14.2% 8.6% 57.4%
p2p-Gnutella31 62,586 147,892 4 3 directed by degree 2 2 no iterations all edges 512 0.358 15.2% 11.3% 51.6%
Theory-5-9-16-25-B1k 26,520 175,873 19 3 directed by degree 4 2 no iterations all edges 128 0.429 33.3% 9.3% 40.4%
Theory-5-9-16-25-B2k 26,520 175,873 5 3 directed by degree 2 2 no iterations all edges 256 0.381 22.8% 10.9% 46.3%
email-Enron 36,692 183,831 22 20 directed by degree 2 2 no iterations all edges 256 1.759 50.2% 14.0% 11.6%
ca-AstroPh 18,772 198,050 57 4 directed by degree no tiling no parallelization no iterations all edges 256 0.564 33.2% 10.0% 37.5%
loc-brightkite edges 58,228 214,078 43 10 directed by degree 4 2 no iterations all edges 256 0.909 42.7% 12.5% 20.2%
Theory-3-4-5-9-16-B1k 20,400 217,255 19 4 directed by degree 4 no parallelization no iterations all edges 128 0.635 41.2% 9.8% 31.4%
Theory-3-4-5-9-16-B2k 20,400 217,255 6 3 directed by degree no tiling no parallelization no iterations all edges 256 0.418 29.2% 10.3% 42.6%
cit-HepTh 27,770 352,285 30 12 directed by degree no tiling no parallelization no iterations all edges 1024 1.104 41.3% 13.7% 20.2%
email-EuAll 265,214 364,481 20 14 directed by degree 2 2 no iterations all edges 1024 1.675 53.6% 12.1% 14.7%
soc-Epinions1 75,879 405,740 33 26 directed by degree no tiling no parallelization first 2 iterations all edges 1024 2.995 49.7% 10.6% 19.7%
cit-HepPh 34,546 420,877 25 8 directed by degree 16 4 no iterations all edges 512 0.991 40.4% 13.8% 24.6%
soc-Slashdot0811 77,360 469,180 35 23 directed by degree 4 4 first 1 iterations all edges 256 2.241 49.7% 11.6% 16.4%
soc-Slashdot0902 82,168 504,230 36 16 directed by degree no tiling no parallelization first 1 iterations all edges 512 1.769 47.6% 10.7% 20.8%
amazon0302 262,111 899,792 7 4 directed by degree no tiling no parallelization no iterations all edges 512 0.652 28.6% 18.4% 35.4%
loc-gowalla edges 196,591 950,327 29 10 directed by degree 2 no parallelization no iterations all edges 512 1.371 46.4% 13.3% 14.6%
flickrEdges 105,938 1,158,474 574 4 directed by degree 2 no parallelization no iterations all edges 128 18.554 93.0% 2.2% 2.9%
roadNet-PA 1,088,092 1,541,898 4 4 directed by degree 2 no parallelization no iterations all edges 256 0.682 21.8% 19.6% 41.8%
Theory-4-5-9-16-25-B1k 132,600 1,582,861 28 4 directed by degree 2 2 first 1 iterations all edges 512 2.492 72.3% 5.5% 17.1%
Theory-4-5-9-16-25-B2k 132,600 1,582,861 6 3 directed by degree 4 no parallelization no iterations all edges 256 1.117 55.6% 13.2% 21.6%
roadNet-TX 1,379,917 1,921,660 4 4 directed by degree no tiling no parallelization no iterations all edges 1024 0.776 27.6% 23.6% 32.7%
Theory-25-81-256-B1k 547,924 2,132,284 28 3 directed by degree 2 no parallelization no iterations all edges 128 2.157 72.7% 9.8% 11.9%
Theory-25-81-256-B2k 547,924 2,132,284 4 2 directed by degree 2 2 all 2 iteration all edges 128 0.836 39.5% 17.3% 33.1%
amazon0312 400,727 2,349,869 11 6 directed by degree 2 no parallelization first 1 iterations all edges 512 1.572 41.5% 14.3% 31.5%
amazon0505 410,236 2,439,437 11 6 directed by degree 4 no parallelization no iterations all edges 256 1.629 51.1% 21.6% 16.8%
amazon0601 403,394 2,443,408 11 6 directed by degree 4 2 first 1 iterations all edges 128 1.643 42.4% 16.4% 29.7%
Theory-9-16-25-81-B1k 362,440 2,606,125 28 3 directed by degree no tiling no parallelization all 3 iteration all edges 128 3.267 77.4% 5.4% 13.7%
Theory-9-16-25-81-B2k 362,440 2,606,125 5 3 directed by degree 2 no parallelization no iterations all edges 256 1.480 60.6% 14.3% 17.7%
roadNet-CA 1,965,206 2,766,607 4 4 directed by degree no tiling no parallelization no iterations all edges 512 1.001 30.9% 25.7% 30.3%
graph500-scale18-ef16 174,147 3,800,348 159 51 directed by degree 16 no parallelization first 1 iterations all edges 512 71.229 95.5% 1.5% 0.9%
graph500-scale19-ef16 335,318 7,729,675 213 29 directed by degree 16 4 all 29 iteration all edges 1024 110.339 90.3% 0.7% 8.2%
Theory-3-4-5-9-16-25-B1k 530,400 11,080,030 62 4 directed by degree 2 no parallelization all 4 iteration all edges 1024 26.377 93.4% 2.5% 3.5%
Theory-3-4-5-9-16-25-B2k 530,400 11,080,030 7 3 directed by degree no tiling no parallelization first 1 iterations all edges 512 7.795 81.0% 8.4% 9.0%
graph500-scale20-ef16 645,820 15,680,861 284 134 directed by degree 8 4 first 8 iterations affected edges 1024 372.465 96.7% 0.7% 0.5%
cit-Patents 3,774,768 16,518,947 36 22 directed by degree 16 4 first 1 iterations all edges 512 13.136 66.4% 8.5% 20.7%
Theory-5-9-16-25-81-B1k 2,174,640 28,667,380 84 4 directed by degree no tiling no parallelization all 4 iteration all edges 128 83.136 96.4% 1.8% 1.7%
Theory-5-9-16-25-81-B2k 2,174,640 28,667,380 6 3 directed by degree no tiling no parallelization all 3 iteration all edges 256 25.825 89.4% 5.7% 4.5%
graph500-scale21-ef16 1,243,072 31,731,650 373 25 undirected 32 no parallelization first 2 iterations affected edges 256 2,997.922 99.5% 0.3% 0.2%
graph500-scale22-ef16 2,393,285 64,097,004 485 28 undirected 32 no parallelization first 4 iterations all edges 256 9,208.547 99.8% 0.1% 0.1%
graph500-scale23-ef16 4,606,314 129,250,705 625 74 undirected 32 no parallelization first 2 iterations affected edges 256 27,002.074 99.8% 0.1% 0.1%
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