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Abstract—In modern computing environments, users may have
multiple systems accessible to them such as local clusters, private
clouds, or public clouds. This abundance of choices makes it
difficult for users to select the system and configuration for
running an application that best meet their performance and
cost objectives. To assist such users, we propose a prediction
tool that predicts the full performance-cost trade-off space of an
application across multiple systems. Our tool runs and profiles a
submitted application on a small number of configurations from
some of the systems, and uses that information to predict the
application’s performance on all configurations in all systems.
The prediction models are trained offline with data collected
from running a large number of applications on a wide variety
of configurations. Notable aspects of our tool include: providing
different scopes of prediction with varying online profiling
requirements, automating the selection of the small number of
configurations and systems used for online profiling, performing
online profiling using partial runs thereby make predictions for
applications without running them to completion, employing a
classifier to distinguish applications that scale well from those
that scale poorly, and predicting the sensitivity of applications
to interference from other users. We evaluate our tool using 69
data analytics and scientific computing benchmarks executing on
three different single-node CPU systems with 8-9 configurations
each and show that it can achieve low prediction error with
modest profiling overhead.

I. INTRODUCTION

Application developers today have multiple systems acces-
sible to them for running their applications. They can choose
between different local clusters or private clouds available at
their company or institution, as well as a wide range of public
cloud offerings. However, selecting the best system and config-
uration for an application is challenging because it depends on
the behavior of the application as well as the performance and
cost objectives of the user. On the application side, different
applications have different performance bottlenecks causing
them to perform best on different systems. Moreover, when
applications are given more resources on a system, some may
scale well experiencing little increase in cost, others may suffer
from increasing cost with diminishing performance returns,
and others may even slow down increasing both execution time
and cost. On the user side, some users may aim to minimize
cost, others may aim to minimize execution time, and others
may aim to find the best trade-off between the two.

Our goal is to provide users with a complete view of the
performance-cost trade-off space for any application across
multiple systems and configurations. This information can

assist users with making the best decisions that meet their per-
formance and cost objectives. However, running an application
on all systems and configurations to provide such information
would be prohibitively expensive. For this reason, it is desir-
able to have performance modeling tools that can predict the
performance-cost trade-off for arbitrary applications without
the need to run these applications to completion and on a
large number of systems and configurations.

Many prior works aim at assisting users with selecting the
best system and configuration for an application by employing
prediction techniques. One major direction is to use optimiza-
tion techniques to find the optimal or near-optimal system and
configuration that minimize some objective function [1]–[12].
However, simply finding a near-optimal configuration does not
give users enough flexibility in meeting their diverse goals and
preferences. For example, a user may be willing to sacrifice
a small amount of performance in return for substantial cost
savings. Such decisions can best be made when the user has
a full view of the performance-cost trade-off space.

A number of prior works aim at predicting the perfor-
mance of applications on all available systems and configura-
tions [13]–[22]. One approach is to use analytical models [13]–
[15], and train the coefficients of these analytical models
for each system using data collected about the application.
However, these models tend to be specific to the application
and system in question and do not predict relative performance
across multiple systems. Moreover, they tend to require run-
ning the application to completion many times on a system
to make predictions for that system. Another approach is to
leverage information collected about other applications offline
to train a general model that can make predictions for new
applications with little online data collection [16]–[20]. This
latter approach is the one adopted in our work.

We propose a tool for predicting the performance-cost trade-
off of an arbitrary application across different systems and
different resource configurations per system. Our tool profiles
a submitted application on a small number of configurations
called fingerprint configurations to generate an application
fingerprint. It then passes the fingerprint to a classifier that
distinguishes applications that scale well from those that scale
poorly. For applications that scale well, it passes the fingerprint
to a regression model that predicts the performance of the
application on all systems and for all resource configurations
in each system. For applications that scale poorly, it uses a



different regression model that only predicts the performance
of the application on the smallest resource configuration of
each system. Our tool also predicts the sensitivity of the
application to different kinds of interference. To train our
prediction models, we run a large number of benchmarks
offline on different configurations and collect performance and
profiling data. Using this data, we automatically identify the
best set of fingerprint configurations and profiling metrics to
use for generating fingerprints, and train the classifier and the
regression models accordingly.

Our general approach of generating application finger-
prints using profiling information is inspired by the work in
PARIS [16]. However, we make several additional contribu-
tions. We provide multiple scopes of prediction (global, single-
system, and local) with varying accuracy and online profiling
overhead. We automate the process of selecting the fingerprint
configurations rather than hand-picking them. We make pre-
dictions based on relative metrics collected from partial runs
without needing to measure execution time from complete
runs, and therefore do not require the user to provide a
representative short-running task for the fingerprinting process.
We use a classifier to distinguish applications that scale well
from those that scale poorly to allow the regression models
to focus on a particular class of applications. We predict the
sensitivity of the application to different kinds of interference.
We also quantify the impact of not performing exhaustive data
collection when gathering training data offline.

We evaluate our tool using 69 data analytics and scientific
computing benchmarks executing on three different single-
node CPU systems with 8-9 configurations each (26 configu-
rations in total). Our evaluation shows that our tool can predict
the performance-cost trade-off of an application across these
three systems (26 configurations) with a mean error of 22.5%
by profiling the application for just 30 seconds on only three
configurations. Moreover, if we narrow the scope to a single
system, our tool can make predictions with a mean error of
11.4% to 15.6%. If we further narrow the scope, our tool
can profile applications on a single configuration and make
predictions for nearby configurations with less than 10% error
for most configurations. We show that our tool is effective in
realistic scenarios by predicting the performance-cost trade-
off of GROMACS [23], a commonly used molecular dynamics
simulation application, across three systems with a mean error
17.3% by profiling it for only 5% of its execution time. We
show that our proposed classifier is responsible for reducing
prediction error by a mean of 6.67%. We also quantify the
impact of making predictions for applications based on partial
runs instead of complete runs, and of training our models
with partial training data coverage instead of full coverage.
Our future work involves expanding the scope of our tool
and evaluation to a wider variety of systems, including multi-
node systems with network communication and systems with
accelerators such as GPUs.

The rest of this paper is organized as follows. Section II
motivates the need to predict the full performance-cost trade-
off of applications. Section III describes the workflow of our

prediction tool when making a performance prediction for
a submitted application. Section IV describes how our tool
is deployed in a specific system, including how the training
data is collected and how the fingerprint configurations are
selected. Section V summarizes our methodology and Sec-
tion VI thoroughly evaluates our tool and the various design
decisions made. Finally, Section VII reviews related work and
Section IX concludes.

II. MOTIVATION

Finding the best resource configuration for running an ap-
plication is a challenging task and depends on the behavior of
the application as well as the performance and cost objectives
of the user. Figure 1 shows the trade-off between execution
time and cost for three different applications (see Section V
for methodology). We observe that each application exhibits a
unique behavior that prompts different users to take different
actions.
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(a) 350.md execution time versus cost

(b) 376.kdtree execution time versus cost

(c) streamcluster execution time versus cost

Fig. 1. Trade-off between execution time and cost of three applications

The first application, 350.md in Figure 1(a), witnesses a
modest decrease in execution time when going from 1 vCPU



to 8 vCPUs resulting in a substantial increase in cost. How-
ever, beyond that point, the application begins to scale well
experiencing a substantial improvement in performance with
little cost increase. For such an application, a performance-
oriented user who is willing to reach the budget for 8 vCPUs
might as well request the full 64 vCPUs since they would get
substantial performance increase for little additional cost.

The second application, 376.kdtree in Figure 1(b), witnesses
a substantial decrease in execution time when going from
1 vCPU to 16 vCPUs resulting in a minor increase in cost.
However, beyond that point, the execution time decreases
negligibly resulting in a substantial increase in cost. For such
an application, even a performance-oriented user should not
request more than 16 vCPUs since they would just be incurring
additional cost for no performance benefit.

The third application, streamcluster in Figure 1(c), witnesses
an increase in execution time when given more vCPUs. For
such an application the scales poorly, both a budget-oriented
and a performance-oriented user should use only 1 vCPU to
execute the application.

In each of the aforementioned cases, users need to be able
to see the full trade-off space between execution time and
performance to make the right decisions that meet their ob-
jectives. Simply knowing the least-cost or the best-performing
configuration is not sufficient for making nuance decisions.
This problem is further complicated when users have multiple
systems available to them such that different Pareto-optimal
choices may come from different systems. For this reason,
we propose a performance prediction tool that can predict the
performance of an arbitrary application on multiple systems
and configurations per system.

III. PREDICTION TOOL WORKFLOW

In this section, we describe the workflow of our prediction
tool after it has been deployed. In other words, we describe
how our tool makes a performance prediction for a submitted
application. We outline the workflow of our global and trade-
off predictor in Section III-A, then discuss the individual steps
of that workflow in Sections III-B, III-C, and III-D. We discuss
how we predict the application’s sensitivity to interference in
Section III-E. Finally, we describe how we trade-off the scope
of prediction for higher prediction accuracy and lower online
profiling overhead in Section III-F.

A. Global Trade-off Predictor

The global trade-off predictor predicts the performance-
cost trade-off of an application across all configurations in
all available systems. Figure 2 shows the overall workflow
of our global trade-off predictor. In the first step, an appli-
cation submitted to the tool is executed on a select set of
configurations from the different systems, called fingerprint
configurations, to generate a fingerprint for the application.
An application’s fingerprint is a set of profiling metric values
collected while executing the application on each of the
fingerprint configurations. The fingerprint is used as an input
feature vector to the tool’s prediction models.
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Fig. 2. Global trade-off predictor workflow

In the second step, the fingerprint is passed to a classifier
which classifies the application into one of two categories:
scales well or scales poorly. Depending on the result of the
classification, the application will be treated differently in the
third step.

In the third step, the fingerprint of the application is passed
to one of two regression models depending on whether the
application scales well or scales poorly. For applications that
scale well, the regression model predicts the performance of
the application on all systems and configurations for some
performance metric. The performance metric used in the main
evaluation in this paper is speedup relative to a baseline
system and configuration. This relative speedup can then be
used to derive the relative cost and visualize the complete
performance-cost trade-off space. It can also be used to derive
the absolute execution time and the absolute cost if the
application is run to completion on one of the configurations.
For applications that scale poorly, it is unnecessary to make a
prediction for all configurations on each system because it is
always best to execute the application using the configuration
with the fewest resources. For this reason, the fingerprint is
passed to a different regression model that predicts the relative
performance of the application on all systems only for the
configuration with the fewest resources.

B. Fingerprint Generation

In the fingerprint generation step, the submitted application
is executed and profiled on a set of fingerprint configurations
to generate the application’s fingerprint. Important aspects
of performing this step include: the choice of fingerprint
configurations to execute on, the choice of profiling metrics
to collect, and the span of the data collection.

1) Choice of Fingerprint Configurations: The number and
choice of fingerprint configurations used for profiling the
application depends on the set of systems being targeted and is
decided at deployment time while the prediction models are
being trained. Using more fingerprint configurations has the
advantage of improving prediction accuracy but with marginal
returns as the number increases. On the other hand, it has the
disadvantage of requiring more execution resources to generate



the fingerprint of a submitted application. We describe how
we select the fingerprint configurations at deployment time
in Section IV-B. We evaluate the impact of selecting the
fingerprint configurations in Section VI-B.

2) Choice of Profiling Metrics: The choice of profiling
metrics to be collected depends on the system on which the
profiling takes place. Different systems may have different
profiling tools and metrics available, so our tool supports using
different metrics from different systems and configurations in
the fingerprint. In all cases, we use relative metrics (i.e., events
per second) because they are independent of the application’s
absolute execution time. Using metrics that are independent
of absolute execution time has two advantages. This first
advantage is that it makes it possible to collect the metrics
without running the application to completion. The second
advantage is that it makes it possible to train the models with
a variety of applications having a wide range of execution
times. The specific set of metrics used from each system
and configuration are decided at deployment time while the
prediction models are being trained as part of the feature
selection process.

3) Span of Data Collection: When running a submitted
application on the fingerprint configurations, the application
may be run partially or it may be run to completion. Running
the application to completion may be acceptable for short-
running applications that execute frequently with the same
workload size, such that the overhead of running to completion
can be amortized. In this case, the absolute and relative exe-
cution time on the fingerprint configurations can be measured
and included in the fingerprint, which makes it easier for the
models to make predictions for other configurations. However,
for long-running applications that do not execute frequently,
running them to completion on all fingerprint configurations
would require a large amount of execution resources and the
cost is not amortized. For this reason, it is desirable to be
able to make predictions based on relative profiling metrics
only without having to measure the application’s absolute
and relative execution time. In the main evaluation in this
paper, we use relative profiling metrics collected from partial
runs because we prioritize not needing to run a submitted
application to completion in order to make a prediction for it.
However, in Section VI-F, we evaluate the impact of running
the application to completion and including its relative execu-
tion time on the fingerprint configurations in the fingerprint.

C. Classification by Scalability

In the classification step, we classify submitted applications
into those that scale well and those that scale poorly. We
define an application as scaling poorly if when scaled from the
configuration with fewest resources to the configuration with
the most resources, it slows down on the majority of systems
(in practice, this behavior tends to be consistent across all
systems). If an application scales poorly, then giving this appli-
cation more resources will cause it to incur substantially higher
cost without witnessing any significant performance benefit.
An example of such an application is shown in Figure 1(c). In

this case, it is always best to execute this application on the
configuration with the fewest resources, so it is not useful to
make accurate predictions for other configurations. It is only
useful to predict the relative performance of this application
across the different systems. By separating the applications
that scale well from those that scale poorly and using different
regression models for each category, we allow each regression
model to focus on having better accuracy for its category.

We use a random forest classifier to classify applications
by scalability. We evaluate the accuracy of the classifier in
Section VI-A. This classifier is used in the main evaluation in
this paper, however, Section VI-E evaluates the impact of not
using this classifier and using the same regression model for
all applications.

D. Performance Prediction

In the performance prediction step, we pass the fingerprint
of a submitted application to the appropriate regression model,
and the regression model predicts the performance of the
application on the different systems and configurations. We
use speedup over a baseline system and configuration as the
predicted performance metric, but the model may also be
trained to predict other metrics. The baseline system and
configuration are chosen during the fingerprint configuration
selection process. We use XGBoost [24] for our regression
models. We evaluate the accuracy of our regression models in
Section VI-B.

E. Predicting Sensitivity to Interference

Among the systems a user may have access to, some
systems may be shared by other users who can run their
applications simultaneously on the same node, such as in
cloud environments. For this reason, it is useful for users
to know the extent to which the predicted performance may
fluctuate in the presence of interference from other users.
To predict the sensitivity of applications to interference, we
train another interference-aware regression model that predicts
the performance of submitted applications on all systems
and configurations as well as under different interference
extremes for each system and configuration. We make predic-
tions for four types of interference patterns: no interference,
compute-intensive interference, cache-intensive interference,
and memory-intensive interference. Hence, the model will pro-
duce four outputs for every system-configuration combination,
one for each interference pattern.

The predictions made by this interference-aware regression
model are useful because they provide users with a bound on
the performance fluctuation they may observe if they run their
application alongside other applications. These predictions can
also be useful to schedulers when making decisions on which
applications to co-locate together. Finally, even in non-shared
environments, the same approach can be useful for predicting
the sensitivity of an application to different QoS constraints.
For example, knowing how an application’s performance may
fluctuate when varying different QoS constraints can be useful
for service providers in deciding what part of the system



to throttle to meet a fluctuating power budget. We evaluate
the accuracy of our interference-aware regression model in
Section VI-D.

F. Scope of Prediction

The global trade-off predictor described so far profiles an
application on a specific set of systems and configurations to
make a prediction for all systems and configurations. However,
in some cases, a user may be interested in a specific system,
or even a specific range of configurations in one system.
In such cases, focusing on a narrower scope of prediction
can allow for potentially higher accuracy and lower online
profiling overhead. For this reason, in addition to our global
trade-off predictor, we also provide a single-system predictor
and a local trade-off predictor.

The single-system predictor resembles the global trade-
off predictor, except that it trains separate models for each
system. It also typically needs to run the application on fewer
fingerprint configurations that come from just the system of
interest.

On the other hand, the local trade-off predictor profiles an
application on a single configuration from a single system and
predicts the relative performance of the application on nearby
configurations. Figure 3 shows the workflow of our local
trade-off predictor. In the first step, a submitted application is
executed and profiled on a system and configuration specified
by the user to generate a fingerprint consisting of the profiling
metric values collected. In the second step, the fingerprint
is passed to a regression model specific to that system and
configuration which predicts the relative performance of the
application on the configurations with slightly more or slightly
fewer cores. Again, we use XGBoost [24] as the regression
model.
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Fig. 3. Local trade-off predictor workflow

The motivation for providing this alternative predictor is
that a user may already have an idea about which system and
range of configurations are most suitable and only needs to fine
tune that decision. In this case, the local trade-off predictor can
provide more accurate predictions and with less overhead since
the application only needs to be profiled once. The fingerprint
could also be obtained from historical runs of the application.
In this case, our local predictor would be useful at making
retrospective suggestions on the expected performance-cost
trade-off if the user chooses to scale up or scale down in the
future.

IV. PREDICTION TOOL DEPLOYMENT

In this section, we describe the steps for deploying our
prediction tool on a target set of systems. We first describe
how we collect the training data in Section IV-A. We then
describe how we train the prediction models in Section IV-B.

A. Collection of Training Data

The first step in deployment is to collect the data needed
to train the models. To do so, we execute a large number of
benchmarks on the different systems and configurations and
profile them while they execute. The benchmarks are executed
to completion and their execution time is measured so that
their relative speedup on each system and configuration can
be derived. In the main evaluation in this paper, we execute
each benchmark on all systems and configurations per system
when collecting training data. This approach has the advantage
of giving a large amount of information to our prediction
models so that they may have high accuracy. However, it also
requires a large number of executions to collect the training
data. Alternatively, each benchmark could be profiled on a
random subset of the systems and configurations and the
prediction models could be trained without the training data
having exhaustive coverage. We evaluate the impact of using
non-exhaustive training data in Section VI-G.

B. Training the Global and Single-System Trade-off Models

For the local trade-off predictor, we train a separate predic-
tion model for each system and configuration. The input to that
prediction model is the set of profiling metrics collected from
that system and configuration, and the output is the relative
performance on the nearby configurations on the same system.

For the global and single-system trade-off predictors, one
important aspect is selecting the number and choice of fin-
gerprint configurations to use for generating the inputs to
these models. Trying all possible combinations of fingerprint
configurations to find the optimal one would be prohibitively
expensive. For this reason, we use a greedy approach instead
which works as follows. We start by assuming that we will
only use one fingerprint configuration. We try all configura-
tions on all systems as that one fingerprint configuration and
select the one that results in the lowest error for the regression
model for applications that scale well, fixing that as the first
training configuration. We then assume that we will use two
fingerprint configurations. We try all remaining configurations
as the second fingerprint configuration and again select the
one that results in the lowest error, fixing that as the second
fingerprint configuration. We keep repeating this process of
adding more fingerprint configurations until the improvement
in error drops below a threshold indicating that there is little
marginal return from adding more fingerprint configurations.
The baseline configuration is selected in a similar manner.

By trying a set of fingerprint configurations, we mean gen-
erating the fingerprints using those configurations and training
the prediction models using those fingerprints. Throughout
this process, we use all the collected profiling metrics as part
of the fingerprint because trying to jointly select fingerprint



TABLE I
METRICS COLLECTED FROM EACH SYSTEM AND SELECTED BY THE FEATURE SELECTION

(NUMBERS IN PARENTHESES INDICATE FOR WHICH FINGERPRINT CONFIGURATIONS OF THE GLOBAL PREDICTOR THE METRIC WAS SELECTED)

System Metrics Selected System Metrics Selected System Metrics Selected
System 1 alignment-faults No System 1 l2 cache req stat.ls rd blk c Yes (1) Systems 2 & 3 fp arith inst retired.128b packed double Yes (2, 3)

all dc accesses No (continued) l2 cache req stat.ls rd blk cs No (continued) fp arith inst retired.128b packed single Yes (2)
all tlbs flushed No l2 dtlb misses Yes (1) fp arith inst retired.256b packed double Yes (3)

bp l1 tlb miss l2 hit Yes (1) l2 itlb misses Yes (1) fp arith inst retired.256b packed single Yes (2)
bp l1 tlb miss l2 tlb miss Yes (1) l2 latency.l2 cycles waiting on fills No fp arith inst retired.512b packed double Yes (3)

branch-instructions Yes (1) l2 request g1.cacheable ic read Yes (1) fp arith inst retired.512b packed single Yes (3)
branch-misses of all branches No l2 request g1.ls rd blk c s Yes (1) fp arith inst retired.scalar double No
cache-misses of all cache refs Yes (1) l2 request g1.rd blk l Yes (1) fp arith inst retired.scalar single Yes (2, 3)

cache-references Yes (1) l2 request g1.rd blk x No fp assist.any Yes (3)
context-switches No l2 request g2.bus locks originator No GHz Yes (2, 3)

cpu-clock CPUs utilized Yes (1) ls l1 d tlb miss.tlb reload 1g l2 hit No insn per cycle Yes (3)
cpu-cycles GHz No ls tlb flush No inst retired.any No
cpu-migrations No major-faults Yes (1) iTLB-load-misses No

de dis dispatch token stalls0.alu token stall Yes (1) minor-faults Yes (1) iTLB-loads Yes (2, 3)
de dis dispatch token stalls0.retire token stall Yes (1) page-faults No L1-dcache-load-misses Yes (3)

de dis dispatch token stalls1.load queue token stall No sse avx stalls No L1-dcache-loads Yes (2, 3)
de dis dispatch token stalls1.store queue token stall Yes (1) stalled cycles per insn Yes (1) L1-dcache-store No

dTLB-load-misses of all dTLB cache accesses Yes (1) stalled-cycles-backend backend cycles idle No l2 rqsts.all pf Yes (2, 3)
dTLB-loads No stalled-cycles-frontend frontend cycles idle Yes (1) l2 rqsts.all rfo Yes (3)
ex ret instr Yes (1) task-clock CPUs utilized Yes (1) l2 rqsts.miss Yes (3)

ex ret mmx fp instr.mmx instr No uops dispatched Yes (1) l2 rqsts.references Yes (3)
ex ret mmx fp instr.sse instr No uops retired No l2 rqsts.rfo hit Yes (2, 3)

fp ret sse avx ops.all No Systems 2 & 3 branches No l2 rqsts.rfo miss Yes (3)
ic fetch stall.ic stall any Yes (1) branch-misses Yes (2) LLC-load-misses Yes (2, 3)

ic fetch stall.ic stall back pressure Yes (1) bus-cycles Yes (2) LLC-loads Yes (2, 3)
ic fetch stall.ic stall dq empty Yes (1) cache-misses Yes (2, 3) LLC-store-misses No

instructions insn per cycle No cache-references Yes (3) LLC-stores Yes (3)
iTLB-load-misses of all iTLB cache accesses No context-switches No longest lat cache.miss Yes (2, 3)

iTLB-loads Yes (1) cpu-migrations Yes (2, 3) longest lat cache.reference Yes (2)
l1 dtlb misses Yes (1) CPUs utilized Yes (2, 3) mem inst retired.all loads Yes (3)

L1-dcache-load-misses of all L1-dcache accesses Yes (1) cycle activity.cycles l1d miss Yes (3) mem inst retired.all stores Yes (2)
L1-dcache-loads No cycle activity.cycles l2 miss Yes (2, 3) mem load retired.l1 hit Yes (2, 3)

L1-dcache-prefetches Yes (1) cycle activity.cycles l3 miss Yes (2) mem load retired.l1 miss Yes (2)
L1-icache-load-misses of all L1-icache accesses Yes (1) cycle activity.cycles mem any Yes (2) mem load retired.l2 hit Yes (2)

L1-icache-loads No cycle activity.stalls l1d miss No mem load retired.l2 miss Yes (2)
l2 cache accesses from dc misses No cycle activity.stalls l2 miss Yes (2) mem load retired.l3 hit Yes (2)
l2 cache accesses from ic misses Yes (1) cycle activity.stalls l3 miss Yes (3) mem load retired.l3 miss Yes (2, 3)

l2 cache hits from dc misses No cycle activity.stalls mem any No mem-loads Yes (3)
l2 cache hits from ic misses No dTLB-load-misses Yes (3) mem-stores Yes (2, 3)
l2 cache hits from l2 hwpf No dTLB-loads Yes (3) page-faults Yes (2, 3)

l2 cache misses from dc misses Yes (1) dTLB-store-misses Yes (2, 3) resource stalls.any Yes (3)
l2 cache misses from ic miss No dTLB-stores No

configurations and profiling metrics would be prohibitively
expensive. Once we have finalized the set of fingerprint
configurations, we apply standard feature selection techniques
to reduce the number of profiling metrics needed from each
configuration. A different number and set of metrics may be
selected from each configuration. Feature selection improves
prediction accuracy and also reduces the number of metrics
that need to be collected online, thereby reducing the online
profiling overhead.

V. METHODOLOGY

We evaluate our tool using three single-node CPU systems
with the following specifications:

• System 1: A dual socket AMD EPYC 7532 CPU system
with 64 cores (64 threads) and 512GB of main memory

• System 2: A dual socket Intel Xeon Gold 6242 CPU
system with 32 cores (64 threads) and 192GB of main
memory

• System 3: A dual socket Intel Xeon Gold 5120 CPU
system with 28 cores (56 threads) and 64GB of main
memory

On each system, the configurations considered are 1 vCPU
and all multiple of 8 vCPUs, with the main memory distributed
evenly across vCPUs. For example, System 1 has the following
configurations: 1 vCPU + 8 GB, 8 vCPUs + 64 GB, 16 vC-
PUs + 128 GB, 24 vCPUs + 192 GB, 32 vCPUs + 256 GB,
40 vCPUs + 320 GB, 48 vCPUs + 384 GB, 56 vC-
PUs + 448 GB, and 64 vCPUs + 512 GB. Overall, the three
systems together have a total of 26 configurations.

In the evaluation in this paper, we use docker [25] to
configure the number of vCPUs and the amount of physi-
cal memory to be given to each application. We also use
perf [26] to profile the benchmarks and collect a large
number of profiling metrics. However, our workflow and
prediction models are not specific to docker and perf.
Other means of configuring resources and collecting profiling
metrics may also be used, and our training and prediction
workflows would operate in the same way.

We collect around 60 profiling metrics from each system
when obtaining the training data. These metrics differ across
systems because different CPUs have different counters avail-
able. The metrics collected from each system are shown in
Table I. The table also shows which of these metrics were
kept after feature selection for each of the fingerprint configu-
rations used in the global trade-off predictor. We measured the
performance overhead of collecting 60 profiling metrics using
perf to be less than 2% on average.

For predicting the sensitivity of applications to interference,
we use stress-ng [27] to simulate compute-intensive,
cache-intensive, or memory-intensive interference on the un-
used cores in the system. However, our approach is not specific
to stress-ng and other tools for simulating interference
(or QoS constraints) can also be used without affecting our
workflow.

To train and test our prediction models, we use 69 data
analytics and scientific computing benchmarks from seven
benchmarks suites and libraries. These benchmarks are listed
in Table II.

Our training and inference workflows are implemented in



TABLE II
BENCHMARKS USED IN THE EVALUATION

Suite Benchmarks
NAS Parallel
Benchmarks [28]

bt, cg, ep, ft, is, lu, mg, sp

PARSEC3.0 [29] blackscholes, bodytrack, canneal,
freqmine, streamcluster, swaptions,
splash2.barnes, splash2.cholesky,
splash2.radiosity, splash2.volrend

SPEC ACCEL [30] 550.pmd, 552.pep, 554.pcg,
555.pseismic, 556.psp, 559.pmniGhost,
560.pilbdc, 563.pswim, 570.pbt

SPEC OMP 2012 [31] 350.md, 351.bwaves, 352.nab, 357.bt,
358.botsalgn, 359.botsspar, 360.ilbdc,
363.swim, 367.imagick, 370.mgrid,
371.applu, 372.smithwa, 376.kdtree

Parboil [32] bfs, cutcp, histo, lbm, mri-gridding,
sgemm, spmv, stencil, tpacf

Rodinia [33] bfs, heartwall, hotspot, kmeans,
leukocyte, lud omp, needle, pathfinder,
srad v2

MLlib [34] correlation, dtclassifier, fmclassifier,
gbtclassifier, gmm, kmeans,
logisticregression, lsvc, mlp, pca,
randomforestclassifier, summarizer

Python. We use NumPy [35] and pandas [36] for performing
the data preparation and processing tasks. We use the Scikit-
Learn [37] and XGBoost [24] libraries for the classification,
regression, and feature selection algorithms.

We use ten-fold cross-validation throughout the evaluation
section to evaluate the prediction error of our models. For each
fold, we use fingerprints from full runs and partial runs for the
benchmarks in the training set, and fingerprints from partial
runs for the benchmarks in the testing set. For the partial runs,
the benchmarks are fingerprinted for a duration of 30 seconds
in our experiments. However, users may vary the fingerprinting
duration to trade off accuracy for fingerprinting overhead.

We use the symmetric mean absolute percentage error
(SMAPE) [38] as the main error metric to guide our optimiza-
tion. It is possible to use other error metrics such as the mean
absolute percentage error (MAPE), but we opted for SMAPE
due its boundedness between 0% and 200% in addition to the
symmetric penalty given whether the predictions are higher or
lower than the true values (since we are predicting ratios).

VI. EVALUATION

A. Classification Accuracy

Table III shows the confusion matrix for our random forest
classifier which classifies benchmarks based on their scalabil-
ity in the global trade-off predictor. The results show that our
classifier is highly accurate, correctly identifying 58 out of 60
applications that scale well, and eight out of nine applications
that scale poorly. Our tool is thus effective at screening out
applications that scale poorly to allow the main regression
model to focus on applications that scale well.

B. Regression Model Accuracy

Figure 4 shows how the global trade-off predictor’s regres-
sion error for applications that scale well varies as the number

TABLE III
CONFUSION MATRIX OF THE SCALABILITY CLASSIFIER

Predicted scalability
Scales well Scales poorly

True Scales well 58 2
scalability Scales poorly 1 8

System 1,
24 vCPUs, 192 GB

System 2,
56 vCPUs, 168 GB

System 2,
16 vCPUs, 48 GB

System 1,
64 vCPUs, 512 GB
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Fig. 4. Change in regression error of the global trade-off predictor as
the number of fingerprint configurations increases (labels indicate which
configuration is selected each iteration)

of fingerprint configurations is increased. The points in the
figure are labelled with the best fingerprint configuration found
at each iteration.

Based on the results in Figure 4, we make two key ob-
servations. The first observation is that the regression model
error decreases steadily as we go from using one fingerprint
configuration to using three fingerprint configurations, reach-
ing a mean error of 24.2%. However, increasing the number of
fingerprint configurations beyond three hurts accuracy because
the model becomes overloaded with information. For this
reason, we fix the number of fingerprint configurations to
three (out of a total of 26). Note that after feature selection is
applied, the mean error is further reduced to 22.5%.

The second observation is that the three selected fingerprint
configurations span two different systems and three different
vCPU counts. This result shows that the fingerprint config-
uration selection process automatically diversifies the chosen
set of fingerprint configurations. Note, however, that one of
the three systems does not appear in any of the fingerprint
configurations. This result shows that our tool can make
predictions for a system without running the application on
that system at all.

The aforementioned results show that our tool can achieve
reasonable prediction accuracy across multiple systems by
profiling an application on just three configurations. However,
in some cases, a user may already have a particular system in
mind and is not interested in relative performance across other
systems. For such users, our tool also provides single-system
regression models for each system that make performance-cost
trade-off predictions for just that system. Table IV shows how
the prediction errors of these single-system models vary as
the number of fingerprint configurations increases. We observe
that by constraining the problem to a single system, our
tool can achieve lower prediction error, even if profiling the
application on a smaller number of configurations. Note that



after feature selection is applied, the mean error when using
three fingerprint configurations is further reduced to 11.4%,
12.5%, and 15.6% for System 1, 2, and 3, respectively.

TABLE IV
CHANGE IN REGRESSION ERROR OF SINGLE-SYSTEM MODELS AS THE

NUMBER OF FINGERPRINT CONFIGURATIONS INCREASES

Number of configurations 1 2 3 4
System 1 Error 13.5 13.2 12.3 12.3

Configuration 24 vCPUs 32 vCPUs, 8 vCPUs, 56 vCPUs
192GB 256GB 64GB 448GB

System 2 Error 15.5 13.6 13.4 13.4
Configuration 16 vCPUs 56 vCPUs 40 vCPUs 48 vCPUs

48 GB 168GB 120GB 144GB
System 3 Error 19.0 17.4 17.0 17.1

Configuration 24 vCPUs 32 vCPUs 40 vCPUs 8 vCPUs
24GB 32GB 40GB 8GB

The prediction error achieved by the global and single-
system predictors varies across benchmarks. Figure 5 shows
the distribution of the prediction error across benchmarks for
each predictor. It is clear that our models can make predic-
tions for many benchmarks with very low error. Moreover,
the median error is consistently lower than the mean error,
indicating that there are more benchmarks whose prediction
error is below the mean. However, the prediction error remains
high for some benchmarks, especially outliers. Screening out
such benchmarks with more sophisticated classification is the
subject of future work.

Fig. 5. Distribution of error across benchmarks for the global and single-
system predictors

C. Application Case Study: GROMACS

To test the effectiveness of our tool in a realistic scenario, we
apply it to a commonly used molecular dynamics simulation
application called GROMACS [23]. We use a global trade-off
prediction model that has been trained using the benchmarks
in Table II and that has never seen GROMACS before. We
execute and profile GROMACS on the model’s fingerprint con-
figurations for only 5% of its total execution time on the fastest
system and configuration. The fingerprint obtained is then
passed to the model which predicts the relative performance
of GROMACS on all the systems and configurations. Figure 6
shows the real and predicted relative performance values. It
is clear that our tool does a good job at predicting how
GROMACS behaves across the three systems. Overall, our tool
achieves a mean prediction error of 17.3% for GROMACS.
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Fig. 6. Real vs. predicted relative performance for GROMACS [23]

D. Predicting Sensitivity to Interference

Recall from Section III-E that our tool also provides
interference-aware regression models that predict an applica-
tion’s performance on each system and configuration under
different interference extremes to give users a sense of the
application’s sensitivity to different types of interference. Ta-
ble V shows the prediction error achieved for the global as well
as the single-system predictors when predicting performance
under each of the three considered interference extremes. It
is clear that the achieved prediction error is comparable to
that achieved when no interference is assumed, albeit slightly
higher. It is noteworthy that for most systems, cache-intensive
interference seems to be the most difficult type of interference
to predict for, having a slightly higher error than the rest.

TABLE V
GLOBAL AND SINGLE-SYSTEM REGRESSION ERROR WHEN PREDICTING

PERFORMANCE UNDER DIFFERENT INTERFERENCE EXTREMES

Predictor Type of interference
Compute-intensive Memory-intensive Cache-intensive

Global 24.7 24.6 26.1
System 1 only 14.2 13.0 16.1
System 2 only 15.5 14.1 17.9
System 3 only 22.9 19.4 14.8

E. Impact of Having a Classification Stage

Recall that one of the steps in our global trade-off predic-
tor’s workflow is using a classifier to distinguish applications
that scale well from those that scale poorly to allow the main
regression model to focus on applications that scale well.
In this subsection, we evaluate the benefit of this proposed
classifier. Figure 7(a) compares the mean regression model
prediction error with and without using a classifier. Each
point in the figure represents a benchmark. It is clear that the
majority of benchmarks witness a reduction in mean error due
to the use of the classifier. Figure 7(b) shows the distribution
of the change in mean error per benchmark due to the use of
the classifier. It is again clear that the majority of benchmarks
witness a reduction in mean error. The mean and median
change in error across all benchmarks is -6.67% and -2.25%,
respectively. The overall mean error if a classifier were not
used would be 29.2%. These results verify the effectiveness
of our proposed classification stage at improving the quality
of the regression model.



(a) Comparing mean error per benchmark 
with versus without using the classifier

(b) Distribution of change in mean error 
per benchmark due to using a classifier
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Fig. 7. Impact of using a classifier before the regression model on the
regression model error

F. Impact of Fingerprinting with Partial vs. Complete Runs

In our main evaluation, we only use relative profiling
metrics collected from partial runs of the applications on the
fingerprint configurations. However, if an application is run to
completion on the fingerprint configurations, its relative per-
formance across the fingerprint configurations can be derived
and included in the fingerprint, which gives more information
to the regression model to make accurate predictions. In this
subsection, we evaluate the impact of using complete runs
instead of partial runs on regression model accuracy.

Figure 8(a) compares the mean regression model prediction
error when fingerprinting with partial runs versus complete
runs. Each point in the figure represents a benchmark. It is
clear that the majority of benchmarks witness a reduction in
mean error when complete runs are used. Figure 8(b) shows
the distribution of the change in mean error per benchmark
due to the use of complete runs instead of partial runs
when fingerprinting. It is again clear that the majority of
benchmarks witness a reduction in mean error. The mean and
median change in error across all benchmarks is -8.44% and
-7.27%, respectively. The overall mean error if performance
was measured on the fingerprint configurations and included in
the fingerprint would be 14.1%. These results demonstrate that
a deployer of our tool can substantially reduce prediction error
if they are willing to run submitted applications to completion
when fingerprinting them. However, using partial runs still
provides reasonably accurate predictions.

G. Impact of Training with Partial Data Coverage

In our main evaluation, we collect data to train the re-
gression model by running every benchmark on every system
and configuration. This exhaustive coverage of training data
demands a large amount of execution resources. In this sub-
section, we evaluate the impact of using partial training data
coverage by running each benchmark on a different random
subset of all the systems and configurations.

Figure 9 shows how the regression model prediction ac-
curacy varies with training data coverage for the global and
single-system regression models. As expected, the prediction

(a) Comparing mean error per benchmark when 
fingerprinting with partial versus complete runs

(b) Distribution of change in mean error per 
benchmark due to fingerprinting with 
complete runs instead of partial runs
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Fig. 8. Impact of fingerprinting with partial runs versus complete runs

error increases as the training data coverage decreases, but
it does so more gradually for the single-system models than
for the global model. In fact, in the single-system models,
the error remains under 20% even with coverage as low as
25%. These result shows that deployers of our tool can trade-
off accuracy for the amount of resources used during training
data collection depending on the desired prediction quality.

The configurations used for each benchmark when training
with partial data coverage were selected at random in this
experiment. One could further improve accuracy when training
with partial data coverage by employing more sophisticated
techniques for selecting which configuration to use for each
benchmark during data collection. Such techniques are the
subject of our future work.

H. Local Trade-off Predictor Accuracy

Recall from Section VI-B that our global trade-off predictor
achieves a prediction error of 22.5% when predicting the trade-
off space across three systems by profiling the application on
just four fingerprint configurations. Furthermore, by narrowing
the scope of prediction, our single-system models achieve
prediction errors between 11.4% and 15.6% while profiling
the applications on just two fingerprint configurations. In this
subsection, we evaluate the local trade-off predictor described
in Section III-F which narrows the prediction scope even more
in an attempt to achieve even lower prediction error while
profiling the application on just a single configuration.
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Fig. 9. Impact of training with partial data coverage on global and single-
system regression model accuracy



Figure 10 shows the mean prediction error of each system
and configuration’s regression model in the local trade-off
predictor. Here, the error reported for each system and config-
uration’s regression model is the error of predicting the relative
performance of applications on the nearby configurations on
the same system. We observe that in the majority of cases, the
models achieve a mean prediction error of under 10%. This
result shows the effectiveness of the local trade-off predictor at
reducing prediction error by narrowing the scope of prediction.
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Fig. 10. Prediction error of the local trade-off predictor for each configuration
on each system

One interesting observation from Figure 10 is that the
prediction error for the configurations with 1 vCPU and
8 vCPUs is consistently high. In particular, the predictor finds
it difficult to predict the relative performance between the
configurations with 1 vCPU and 8 vCPUs. Upon investigating
the benchmarks, we identified two reasons that make the
transition between 1 vCPU and 8 vCPUs have an especially
unpredictable performance impact. On the one hand, when
applications run with 1 vCPU, they do not incur any paral-
lelization overhead which gives this configuration a perfor-
mance advantage compared to the remaining configurations.
On the other hand, when applications run with 1 vCPU, they
have a tighter memory budget which gives this configuration
a performance disadvantage.

VII. RELATED WORK

There is a large body of literature on using prediction tools
to assist users with selecting the best system and/or config-
uration to execute their applications. One major direction is
to find the optimal or near-optimal system and configuration
that minimize some objective function [1]–[12] by using
optimization techniques. For example, CherryPick [1] uses
Bayesian optimization to find near-optimal configurations for
big data analytics applications in the public cloud. Arrow [2]
augments Bayesian optimization with low-level performance
information to reduce its fragility. Accordia [3] improves the
performance of Gaussian-process-based approaches by using
the upper confidence bound technique and by supporting
an early abort mechanism for non-promising configurations.
Selecta [4] finds near-optimal configurations for both compute
and storage together. Micky [5], SARA [6], and Vanir [7] find
near-optimal configurations for a group of workloads simul-
taneously. Lynceus [8] simultaneously optimizes the choice

of configurations and application-level parameters such as
the hyper-parameters of a machine learning algorithm. Bilal
et al. [9] evaluate a wide range of black-box optimization
algorithms and show that Bayesian optimization with gradient
boosted regression trees performs well. Google’s Autopi-
lot [39] automatically scales the resource usage of workloads
to reduce overallocation of resources while minimizing the
risk of the application getting throttled or killed due to not
having enough resources.

All these prior works focus on finding a near-optimal
configurations that optimize a particular goal. However, users
may have diverse goals and preferences and some of these
goals may be subtle. For example, a user looking for the
best-performing system and configuration may be willing to
sacrifice a small amount of performance if this sacrifice can
result in large cost savings. Alternatively, a user who is
optimizing for cost may be willing to incur slightly higher cost
if it would result in substantially better performance. For users
to make such decisions (or employ automated tools for making
such decisions), they need to be able to see the complete trade-
off between performance and cost (or other metrics of interest)
to select between different Pareto-optimal options.

A number of prior works aim at predicting the performance
of applications on all available systems and configurations to
provide users with a complete view of the trade-off space [13]–
[22]. Some of these works use analytical models [13]–[15]
where performance is modelled with a hand-crafted equation
and the coefficients of this equation are trained for each
application and system. For example, Ernest [13] proposes
an equation with multiple terms that capture fixed costs,
computations, and different communication patterns. It uses
non-negative least squares to train the coefficients of this equa-
tion, deriving different coefficients for every combination of
application and type of system. Baughman et al. [14] propose
an equation with different terms representing components of
a configuration such as the amount of vCPUs or memory,
and uses non-linear least squares to find coefficients for each
application. The drawback of these analytical approaches is
that they tend to be specific to the application and/or system
in question, which means that they require extensive online
profiling of the application of interest on the system of interest
before being able to make predictions for that application
on that system. Generalizing analytical models to work for
multiple applications and systems would require considering a
larger number of features that distinguish different applications
and systems. However, hand-crafting equations that take such
a large number of features is a difficult task. Instead, more
sophisticated machine learning models can better handle such
large feature sets.

A number of works propose general models that are trained
using information collected offline about a wide variety of
applications on a wide variety of configurations [16]–[22]. Fu
et al. [40] study the general applicability of machine learning
for performance prediction. PARIS [16] trains a random forest
model, and generates an application fingerprint to provide as
an input to that model by profiling a user-provided short-



running task that is representative of the application on a select
set of configurations. ARVMEC [17] trains an XGBoost [24]
model, and uses a similar approach to PARIS for fingerprint
(or gene) generation. Mariani et al. [18] train a random
forest model, however the input to the model is a hardware-
independent profile of the application that can be generated
on any system but requires recompilation of the application.
Paragon [19] and Quasar [20] use collaborative filtering to
predict the performance of an application across many systems
and configurations, and use the predicted information for
scheduling and resource assignment. While these predictions
are effective when used in such a fashion, prior work [16] has
found that the predictions provided by collaborative filtering
do not have sufficient accuracy in their raw form and our
experience has been the same.

Our proposed approach of generating an application fin-
gerprint by profiling an application on select configurations
then passing this fingerprint to a general model is inspired by
the work in PARIS [16]. However, there are several aspects
that distinguish our work from that in PARIS. First, while
PARIS predicts performance globally across multiple systems
and configurations, we provide multiple scopes of predic-
tion (global, single-system, and local) with varying accuracy
and online profiling overhead catered to different use-cases.
Second, in PARIS, the fingerprint configurations are pre-
determined or have to be selected by the deployer, whereas
we provide an automated approach for identifying the best
set of fingerprint configurations. Third, PARIS requires users
to submit a representative short-running task to generate a
fingerprint, whereas we use the original application to generate
the fingerprint and do not need to run it to completion. Fourth,
we use a classifier to distinguish applications that scale well
from those that scale poorly and show that this proposed
classifier is beneficial for performance. Fifth, we predict the
sensitivity of the application to different kinds of interference.

A number of works predict performance across multiple
systems and/or configurations for specific applications such
as distributed matrix-multiplication [41], [42], deep learning
training [43], Hadoop MapReduce jobs [44], VASP jobs [45],
and e-science workflows [46]. Our work targets general ap-
plications and is not specific to a particular framework or
application domain.

Many works aim to model the impact of interference
on application execution [19], [20], [47]–[49]. For example,
Paragon [19] and Quasar [20] use collaborative filtering to
predict how a new application would perform under dif-
ferent interference and heterogeneity conditions to be able
to co-schedule applications effectively. uPredict [47] uses
microbenchmarks to train application-specific performance
models that learn an application’s sensitivity to the contention
of different resources. In our work, we place a bound on
the sensitivity of an application to interference by predicting
the application’s performance under different interference ex-
tremes.

PseudoApp [50] alleviates the need to migrate an application
to the cloud to evaluate its performance by constructing

a pseudo-application that mimics the original application’s
behavior. Such an approach is complementary to our work,
whereby a pseudo-application may be used in the fingerprint-
ing process if the user wishes to see the performance-cost
trade-off before migrating the application.

VIII. LIMITATIONS AND FUTURE WORK

One limitation of our current work is that we have evaluated
our tool only on data analytics and scientific computing bench-
marks executing on single-node CPU systems. Our future
work involves expanding our evaluation to other classes of
applications as well as other types of systems such as multi-
node systems with network communication and systems with
accelerators such as GPUs. Another limitation is that while
our tool achieves low prediction error for many benchmarks,
the error for some benchmarks remains high. Our future work
involves extending the classification stage to screen out such
benchmarks that are difficult to predict. Another limitation
is that our workflow currently fingerprints every submitted
application to make a prediction for it. However, one possible
optimization is to maintain a database of fingerprints for
applications that have been seen before to avoid fingerprinting
the same application again. The success of this optimization
depends on the extent to which an application’s profile and
relative performance are dependent on the input dataset. Inves-
tigating such an optimization is also part of our future work.

IX. CONCLUSION

We propose a tool for predicting the performance-cost
trade-off of an application across different systems and dif-
ferent resource configurations per system. Our tool profiles
a submitted application on a small number of systems and
configurations without needing to run it to completion to
measure its execution time. It then uses the collected profiling
information to classify the application based on its scalability
and predict the performance of the application on all systems
and configurations. It provides multiple scopes of prediction
(global, single-system, and local) with varying accuracy and
online profiling overhead, and it also predicts the sensitivity
of applications to different types of interference. We train our
prediction models by profiling a large number of applications
across a wide variety of configurations, and we automatically
identify a good set of configurations for profiling a submitted
application on when making predictions. Our evaluation on
three single-node CPU systems shows that our tool is effective
at predicting the performance of applications across multiple
systems and configurations with low error.
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